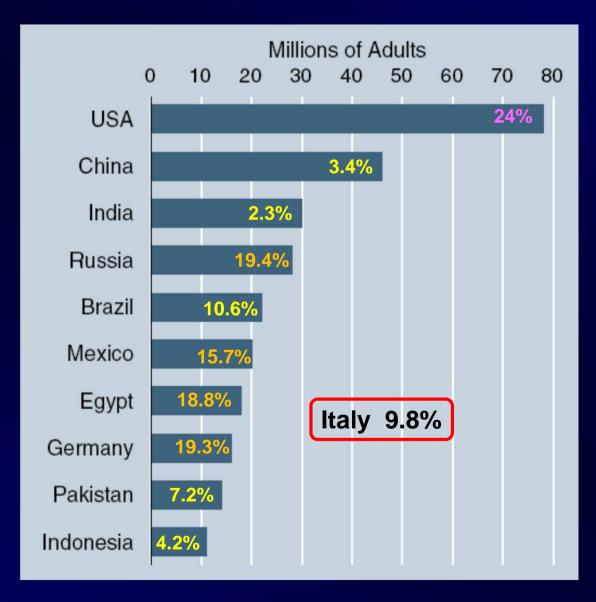
Antibioticoterapia nel paziente obeso

Andrea Novelli

Dipartimento di Scienze della Salute, Sezione di Farmacologia Clinica & Oncologia

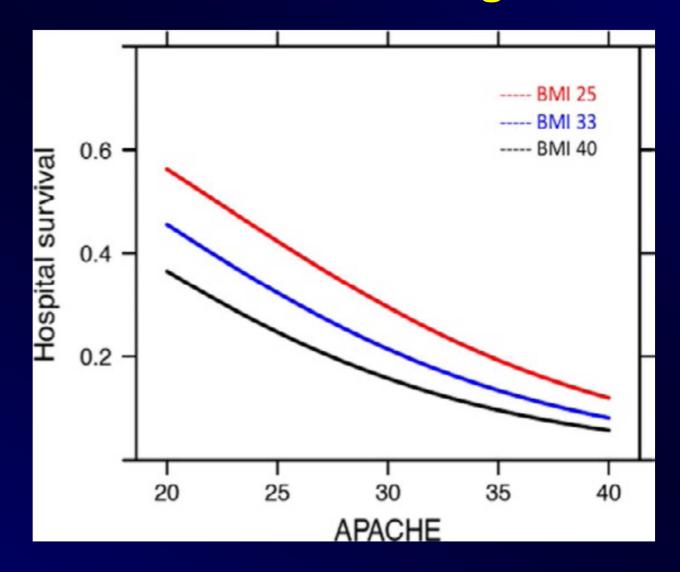

Transparency Declaration

Honoraria or grant support received from:

- Angelini
- MSD

- Valeas
- Zambon Group

Top ten countries for obese adults


Obesity classification

	ВМІ	IBW
Underweight	< 18.5	< 80%
Normal weight	18.5 – 24.99	80 – 125%
Overweight	25 – 29.99	126 – 190%
Obese class I	30 – 34.99	126 – 190%
Obese class II	35 – 39.99	126 – 190%
Obese class III or morbid obesity	40 – 49.9	> 190%
Super obesity	> 50	> 190%

BMI = body mass index; IBW = ideal body weight

Al-Dorzi HM et al., Curr Opin Infect Dis, 2014

Predicted survival according to BMI level

Weight descriptor formulae

BMI = weight in kg/(height in m)²

IBW for men = 50kg + 2.3 kg for each inch above 60 inches of height IBW for women = 45.5kg + 2.3kg for each inch above 60 inches of height

 $ABW = IBW + [(C) \times (TBW - IBW)]$

C = correction factor, for hydrophilic drugs (0.37 - 0.58), average 0.4

Estimated LBW (kg) for men = (9270 x TBW)/(6680 + 216 x BMI) Estimated LBW (kg) for women = (9270 x TBW)/(8780 + 244 x BMI)

ABW, adjusted body weight; BMI, body mass index; IBW, ideal body weight; LBW, lean body weight; TBW, total body weight

Al-Dorzi HM et al., Curr Opin Infect Dis, 2014

PK/PD properties that correlate with efficacy

	Pharmacodynamic kill characteristics					
Antibiotic	Time dependent	Concentration dependent	Concentration dependent with time dependence			
	Penicillins Cephalosporins Carbapenems Natural macrolides Clindamycin Oxazolidinones	Aminoglycosides Fluoroquinolones Fosfomycin Metronidazole Daptomycin	Fluoroquinolones Aminoglycosides Fosfomycin Colistin Glycopeptides Semisynthetic macrolides Tetra- and Glycilcyclines Oxazolidinones			
Optimal PK/PD index	T > MIC	C _{max} /MIC	AUC ₀₋₂₄ /MIC			
Objective	Maximise duration of exposure	Maximise concentration	Maximise amount of drug exposure			
Measures	Frequent administration or prolonged infusion dosing	Infrequent (once daily) administration of high doses	Administration of a high total daily dose			

Osthoff M et al., Swiss Med Wkly, 2016, mod

Antibiotics

Changes in PK parameters

Increased Vd

- Increased excess mass (adipose and lean tissue) – larger change with lipophilic vs hydrophilic drugs
- Hypoalbuminemia*
- Sepsis*

parameters

Ω

0

Se

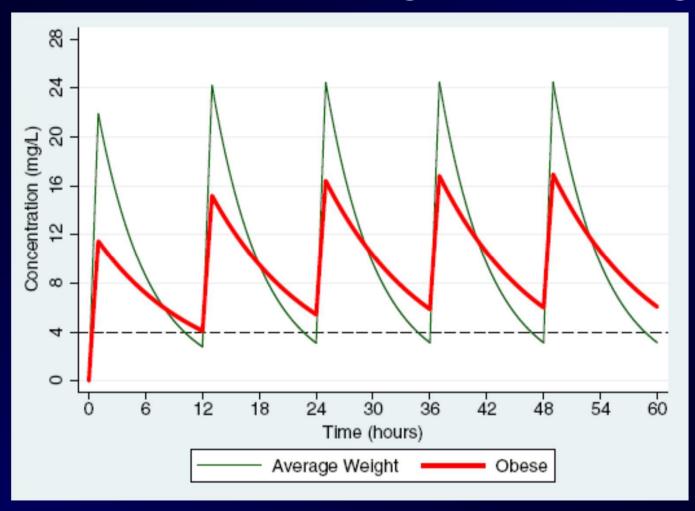
ncrea

- Third spacing, edema*
- Fluid resuscitation*

Decreased Vd

- Increased renal blood flow
- Increased GFR
- Increased kidney mass
- Augmented renal clearance (ARC)*

NFLD (affects drugs that are substrates of CYP2E1 and undergo xanthine oxidase or N-acetyltransferase reactions)


Decreased CL

- Age or obesity-related nephropathy
- Vascular disease, decreased cardiac output, decreased tissue perfusion
- NFLD (affects drugs that are metabolized by CYP3A4)
- Renal impairment, AKI, RRT*
- Hepatic impairment*

^{*}Additional factors as commonly described in a critically ill population. AKI = acute kidney injury; NFLD = nonalcoholic fatty liver disease; RRT = renal replacement therapy

Antimicrobial drugs*

Vd 50% increase & no drug clearance change

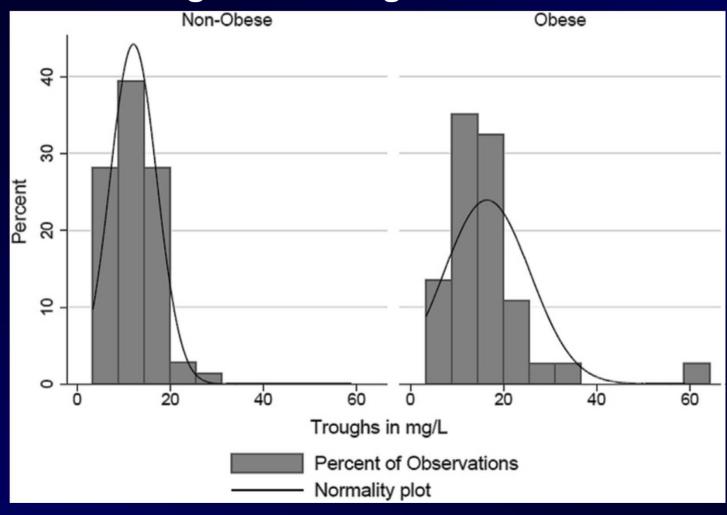
^{* 600}mg BID 1h infusion

Obese patients

Altered physiological and pharmacokinetic factors

DISTRIBUTION

Little/no change in volume of distribution expected if


- Large molecular size
- Highly ionized
- Highly protein bound
- Poorly crosses biological membranes

Increase in volume of distribution expected if

- Small molecular size
- Minimally ionized
- Minimally protein bound
- Easily crosses biological membranes

Vancomycin in obese patients

Histogram of trough distributions

Richardson J et al., J Infect Chemother, 2015

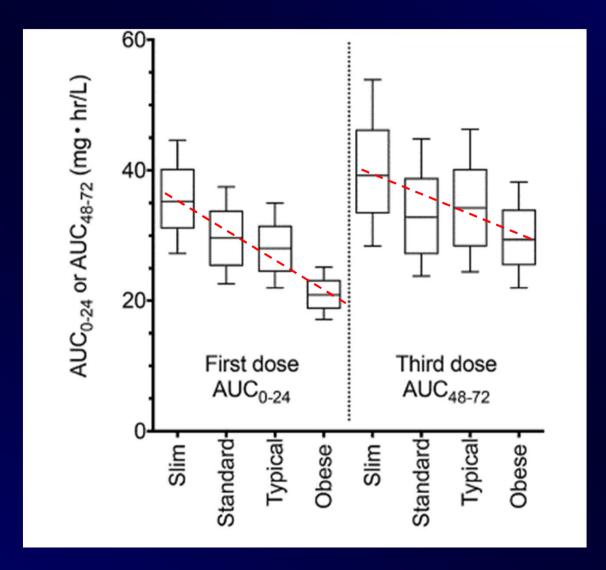
Vancomycin in 108 pts

PK characteristics of obese vs non-obese pts

	Obese (n = 37)	Non-obese (n = 71)	P value
Trough (mg/l), mean (SD)	16.5 (9.2)	12.1 (5.0)	0.004
Trough < 15 mg/l, n (%)	21 (56.8)	49 (69.0)	0.21
Trough > 20 mg/l, n (%)	7 (18.9)	3 (4.2)	0.03
Dose (mg/kg/day), mean (SD)	23.9 (7.3)	26.0 (8.7)	0.18
Estimated PK parameters, mean (SD) Cl _{van} (I/h) VD (I) T¹/₂ (h)	4.7 (1.3) 74.4 (14.5) 11.8 (3.7)	4.4 (1.4) 50.4 (9.3) 8.5 (2.5)	0.34 < 0.001 < 0.001
Estimated t½ elapsed prior to trough, mean (SD)	5.1 (2.1)	6.6 (2.8)	< 0.001
% steady state achieved, mean (SD)	94.6 (4.4)	97.5 (2.6)	< 0.001

Richardson J et al., J Infect Chemother, 2015

Vancomycin trough concentration

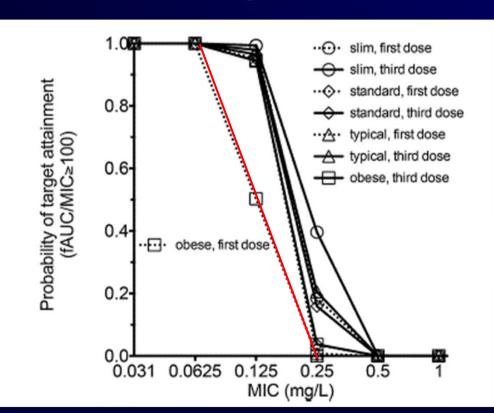

Overweight/obese pediatric patients vs controls

	NBH (%) (n = 84)	Overweight (%) (n = 21)	Obese (%) (n = 21)	P value
Below target range (< 10 mg/l)	43 (51)	6 (29)	2 (10)	0.001
Within target range (10 – 20 mg/l)	39 (46)	12 (57)	15 (71)	0.109
Above target range (> 20 mg/l)	2 (2)	3 (14)	4 (19)	0.011

NBH = normal body habitus

Heble DE et al., Pharmacotherapy, 2013

Moxifloxacin Effect of BW on AUC values



Moxifloxacin Effect of BW on PTA values

Gram-positive

1.0 ·· O· slim, first dose slim, third dose Probability of target attainment (fAUC/MIC≥30) standard, first dose 0.8standard, third dose typical, first dose typical, third dose 0.6 obese, third dose 0.4 0.2 obese, first dose 0.0 0.5 0.125 0.25 MIC (mg/L)

Gram-negative

Wicha SG et al., J Clin Pharmacol, 2015

Hydrophilic antibiotics

Lipophilic antibiotics

Pharmacokinetics

- Generally low Vd
- Primarily cleared in kidneys
- Lower intracellular and tissue penetration
- Generally high Vd
- Primarily cleared in the liver
- Higher intracellular and tissue penetration

Changes in obesity

- Little effect on the antibiotic Vd
- Renal clearance generally increased unless renal impairment is present
- Increase of the antibiotic Vd
- Variable effects on hepatic clearance

Dosing in obesity

 Ideal or adjusted body weight is generally used for dosing

 Total body weight is generally recommended for dosing

Examples of antibiotics

- β-lactams (penicillins, cephalosporins, carbapenems)
- Aminoglycosides
- Vancomycin
- Colistin

- Fluoroquinolones
- Macrolides
- Tigecycline

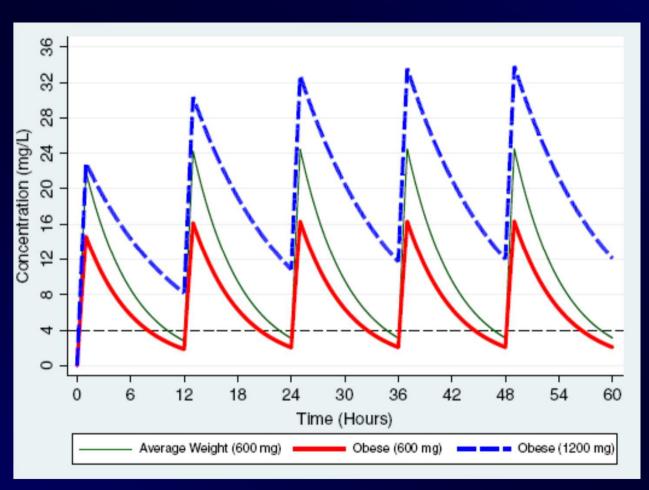
Obese patients

Altered physiological and pharmacokinetic factors

METABOLISM

Increased fatty infiltration of liver

 Altered blood flow and metabolism; Change in activity level of cytochrome P450 enzymes


ELIMINATION

Variable effects on kidney function

- Increased glomerular filtration rate in healthy obese patients
- Possible kidney dysfunction with comorbid conditions

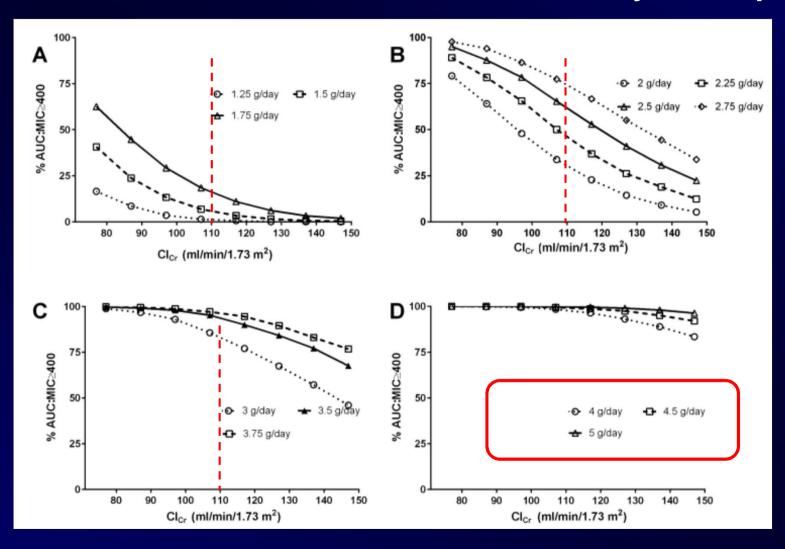
Antimicrobial drugs*

Vd and CI changes

* 600 or 1200mg BID 1h infusion

Pai MP, Curr Opin Pharmacol, 2015

Vancomycin median 1500mg/24h in a non-critical care setting


Monte Carlo Simulation (1000 pts)

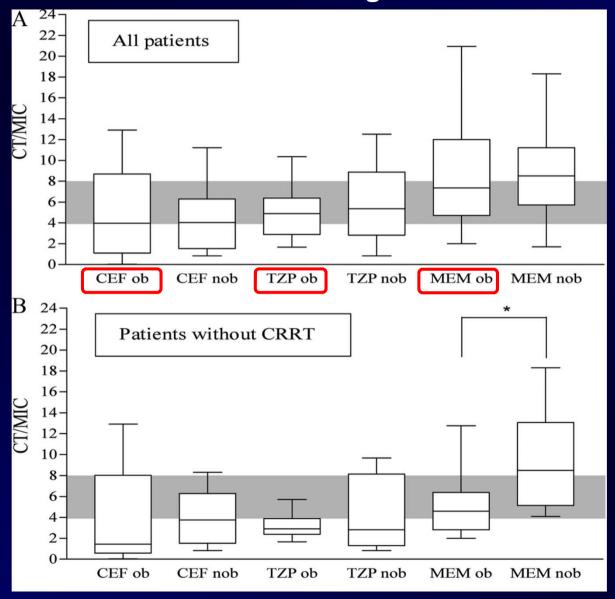
Patients	AUC/MIC (mean ± SD)	Pts with AUC/MIC ≥ 400
Normal (16)	524 ± 174	75%
Overweight (8)	479 ± 108	75%
Obese (6)	320 ± 74	17%

Rawson TD et al., J Infect, 2017

Vancomycin

% AUC/MIC > 400 with different doses in extremely obese patients

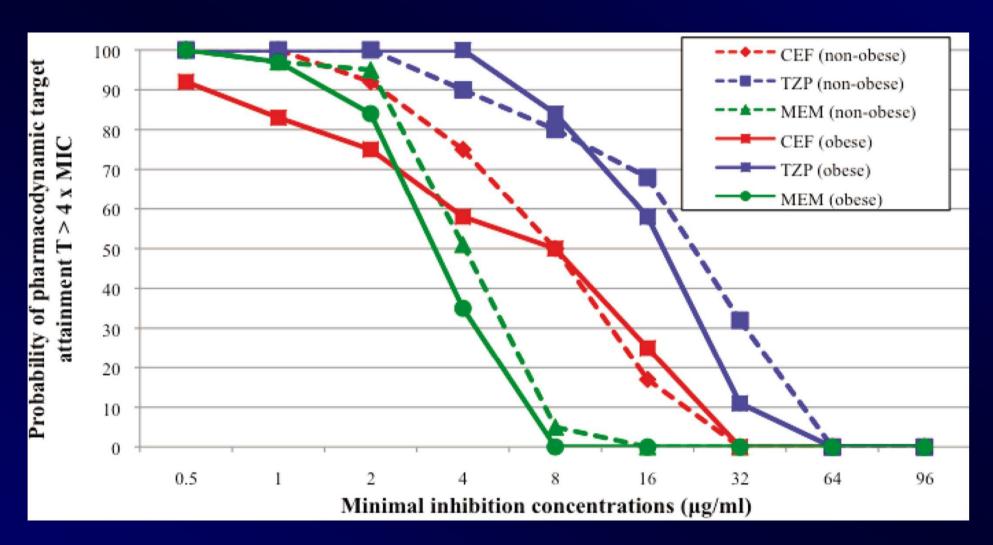
Dosing recommendations of commonly used antibiotics in obese patients with pneumonia


Aminoglycosides The loading dose should be based on adjusted or lean body weight with subsequent dose and interval based on kidney function and drug level

Vancomycin

The loading dose is 25 – 30 mg/kg of TBW in seriously ill patients. Maintenance dose is 15 – 20mg/kg of TBW every 8 – 12h, not to exceed 2g per dose for pts with normal kidney function. Trough level should be measured prior to the 4th or 5th dose. Target trough concentrations of 15 – 20mg/l are recommended. Doses >1.5 g should be infused over ≥ 1.5 h

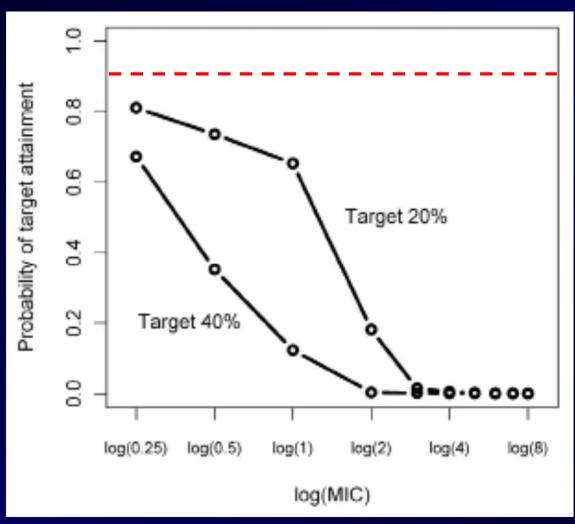
Betalactams


Serum drug concentrations in obese and non obese patients with standard regimens

Hites M et al., Antimicrob Agents Chemother, 2012

Betalactams

PTA in obese and non obese patients


Hites M et al., Antimicrob Agents Chemother, 2012

Steady-state pharmacokinetics and pharmacodynamics of meropenem in morbidly obese patients hospitalized in an intensive care unit

Cheatham SC, Fleming MR, Healy DP, Chung EK, Shea KM, Humphrey ML and Kays MB

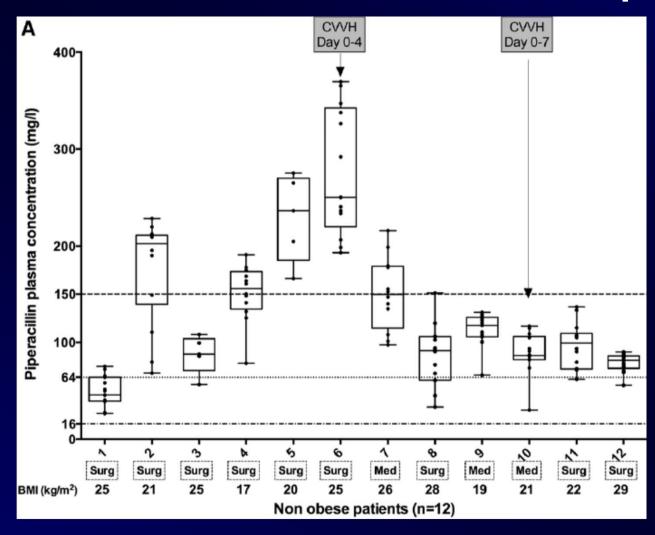
- 9 pts hospitalized in ICU with a BMI ≥40 kg/m² received meropenem 500 mg or 1 g q6h, infused over 0.5h. PK parameters were estimated, and Monte Carlo simulations were performed for 5 dosing regimens (500 mg q8h, 1 g q8h, 2 g q8h, 500 mg q6h, 1 g q6h) infused over 0.5 and 3h.
- Volume of distribution at steady state was 37.4 ± 14.7 L, and systemic clearance was 10.2 ± 5.0 L/h.
- Standard doses achieve adequate exposures for susceptible bacteria at a PD target of 40% fT>MIC. Higher doses or prolonged infusion regimens are needed at the higher pharmacodynamic target

Ertapenem 1g IV PTA* in 10 class III obese female patients

* Monte Carlo simulation

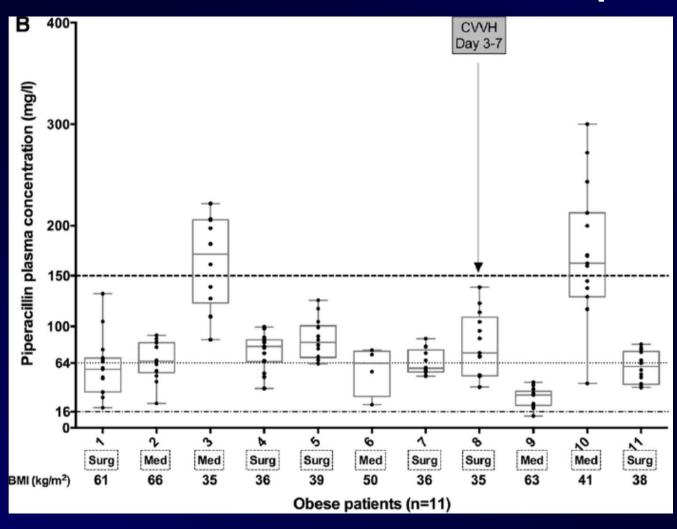
Borracci T et al., Minerva Anestesiol, 2014

Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis


Brill MJE, Houwink API, Schmidt S, Van Dongen EPA, Hazebroek EJ, van Ramshorst B, Deneer VH, Mouton JW and Knibbe CAJ

- Methods: 9 patients BMI 47 ± 6 kg/m², and 7 non-obese pts (BMI 28 ± 3 kg/m²) received cefazolin 2 g IV before surgery.
- Results: The free cefazolin ISF penetration ratio (fAUC_t/fAUC_p) was 0.70 (range 0.68–0.83) in obese pts vs 1.02 (range 0.85–1.41) in non-obese pts (P < 0.05).
- Cefazolin distribution to the ISF compartment proved dependent on body weight. Monte Carlo simulations showed reduced PTA for obese pts for MIC values of 2 and 4 mg/L.
- Conclusions: Cefazolin tissue distribution is lower in obese pts and reduces with increasing body weight. Dose adjustments are required in this patient group.

J Antimicrob Chemother 2014; 69: 715–723


Piperacillin/tazobactam

Plasma concentrations in 12 non obese patients

Piperacillin/tazobactam

Plasma concentrations in 11 obese patients

Piperacillin/tazobactam PTA with different dosing regimen*

Targeted	Probability of Traget Attainment (%)							
	4.0/0.5g every 8h		4.0/0.50	every 6h	4.0/0.5g every 4h			
MIC (mg/l)	Obese Nonobese		Obese Nonobese		Obese	Nonobese		
16	90	100	100	100	100	100		
32	88	100	91	100	100	100		
64	21	65	44	98	75	100		
150	0	8	12	27	18	42		

Jung B et al., Crit Care Med, 2017

^{*} Monte Carlo simulation

Betalactams

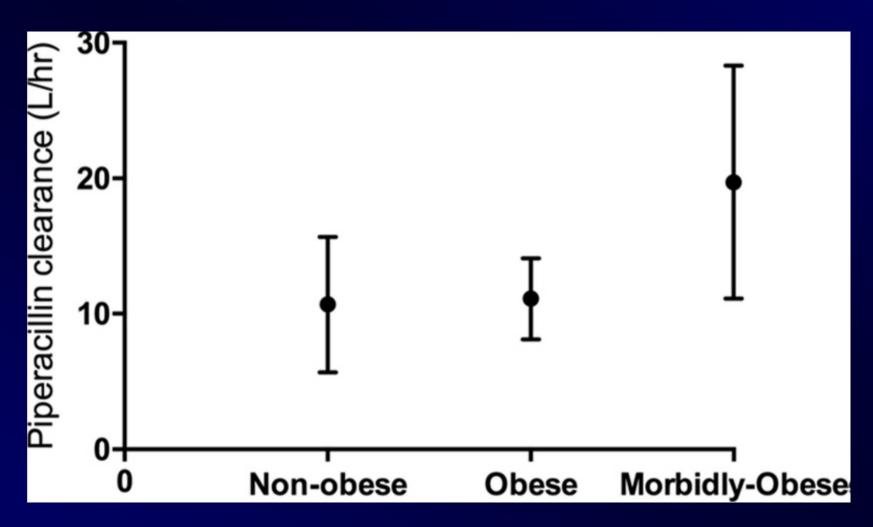
Proposed classification depending on antimicrobial mechanisms

Class (example)	Essential PBP saturation	CFU/ml Log ₁₀ reduction	Biomass increase	PAE (h)	Inoculum effect	Endotoxin release
A (imipenem)	At least two	3 logs in 6h	Absent (PIOD concentration-dependent)	> 3	Small	Negligible
B (ceftazidime)	No more than two	3 logs in 12h	Transient or negligible (PIOD intermediary)	2	Moderate	Little
C (piperacillin)	Only one prevailing	Little or none	Progressive and remarkable (PIOD concentration-independent)	<1	Considerable	Yes

Periti P & Nicoletti P, J Chemother, 1999

β-lactam–**β-lactamase inhibitors against** *E. coli* strains

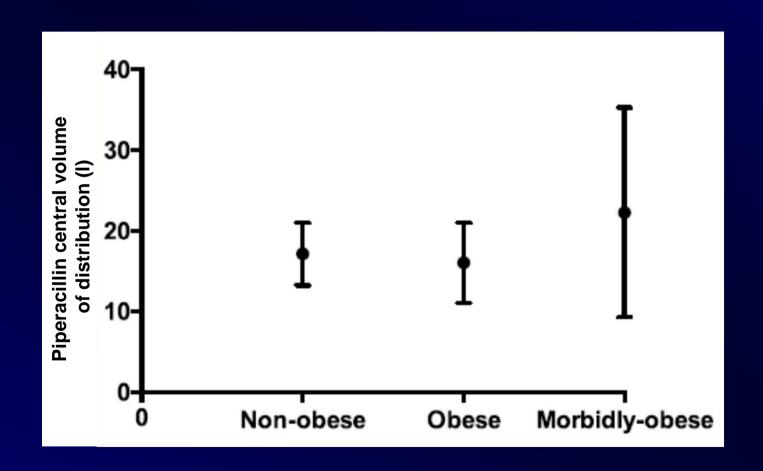
MIC (mg/l) of antimicrobial combinations								
Amoxycillin-clavulanate				Piperacillin-tazobactam				
2 :	: 1	4:1 8:1		3:1	Tazobactam 4 mg/l			
S	Н	S	Н	S	Н	S	Н	
2 – 16	4 – 16	4 – 8	4 – 16	1 – 8	16 → 256	1 – 4	64 – 256	
4 – 16	4 – 16	4 – 16	4 – 16	1 – 16	64 → 256	1 – 8	64 – 256	
4 – 8	8 – 16	4 – 8	8 – 16	4 – 16	64 → 256	1 – 4	256	
	2 : S 2 - 16 4 - 16	Amoxycillin- 2:1 S H 2-16 4-16 4-16 4-16	Amoxycillin-clavulana 2:1 S H S 2-16 4-16 4-16 4-16 4-16	Amoxycillin-clavulanate 2:1 S H S H 2-16 4-16 4-16 4-16 4-16 4-16	Amoxycillin-clavulanate 2:1	Amoxycillin-clavulanate Piperacillin-2:1 4:1 8:1 S H S H S H $2-16$ $4-16$ $4-8$ $4-16$ $1-8$ $16 \rightarrow 256$ $4-16$ $4-16$ $4-16$ $4-16$ $1-16$ $64 \rightarrow 256$	Amoxycillin-clavulanate Piperacillin-tazobact S	


S = standard inoculum for every method according to CLSI guidelines;

H = 100-fold standard inoculum

López-Cerero L et al., Clin Microbiol Infect, 2010

Piperacillin


Effect of BMI on clearance

Alobaid AS et al., Antimicrob Agents Chemother, 2017

Piperacillin

Effect of BMI on volume of distribution

Alobaid AS et al., Antimicrob Agents Chemother, 2017

Dosing recommendations of commonly used antibiotics in obese patients with pneumonia

Penicillins Higher doses of piperacillin and tazobactam and longer

infusion time of up to 4 h

Cephalosporins The upper limit of normal doses is recommended

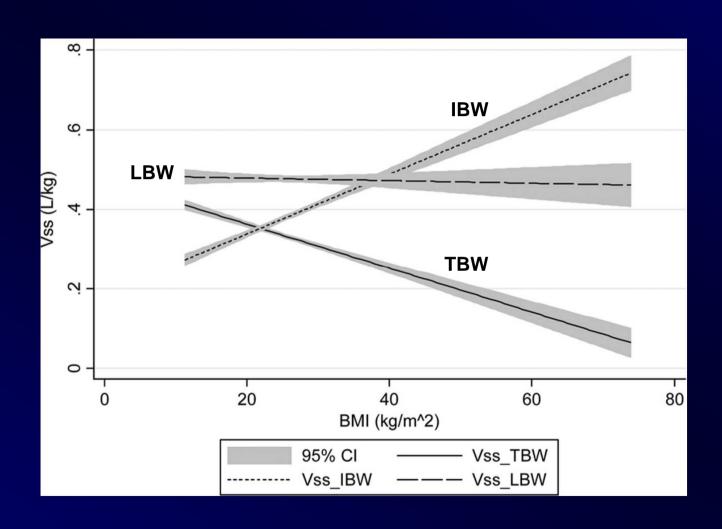
Carbapenems The upper limit of normal doses with extended infusions

over approximately 3 – 4 h is recommended

Obese patients

Altered physiological and pharmacokinetic factors

DISTRIBUTION


Little/no change in volume of distribution expected if

- Large molecular size
- Highly ionized
- Highly protein bound
- Poorly crosses biological membranes

Increase in volume of distribution expected if

- Small molecular size
- Minimally ionized
- Minimally protein bound
- Easily crosses biological membranes

Aminoglycosides Vss (I/kg) plot to TBW, IBW, and LBW

Pai MP et al., Antimicrob Agents Chemother, 2011

Dosing recommendations of commonly used antibiotics in obese patients with pneumonia

Aminoglycosides

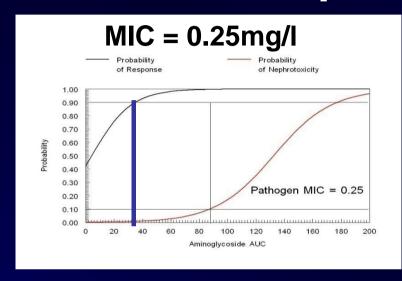
The loading dose should be based on adjusted or lean body weight with subsequent dose and interval based on kidney function and drug level

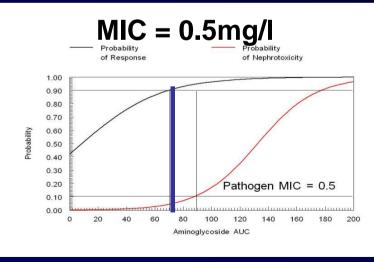
Vancomycin

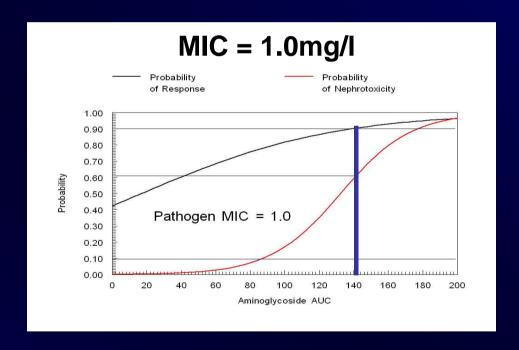
The loading dose is 25 – 30 mg/kg of total body weight in seriously ill patients. Maintenance dose is 15 – 20mg/kg of total body weight every 8 – 12h, not to exceed 2 g per dose for patients with normal kidney function. Serum trough concentration should be measured prior to the fourth or fifth dose. Target trough concentrations of 15 – 20mg/ml are recommended. Doses >1.5 g should be infused over ≥ 1.5 h

Colistin

Dosing colistin using ideal body weight is recommended. Loading doses are suggested


Al-Dorzi HM et al., Curr Opin Infect Dis, 2014


Therapeutic drug monitoring of aminoglycosides

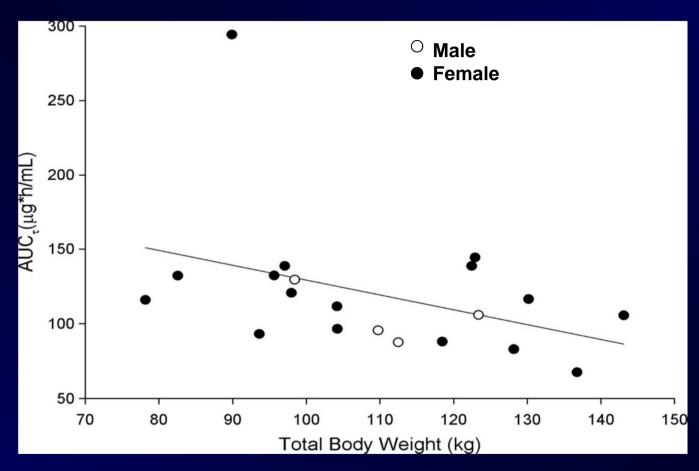

(appropriate loading and maintenance dose regimen)

- Elderly
- Renal impairment
- Infants and neonates
- Severe burns or trauma victims
- Cystic fibrosis
- Sepsis
- Malignancy
- Total parenteral nutrition
- Obesity

AminoglycosidesTherapeutic/Toxic Window

Dosing recommendations of commonly used antibiotics in obese patients with pneumonia

Aminoglycosides	The loading dose should be based on adjusted or lean body weight with subsequent dose and interval based on kidney function and drug level
Vancomycin	The loading dose is 25 – 30 mg/kg of total body weight in seriously ill patients. Maintenance dose is 15 – 20mg/kg of total body weight every 8 – 12h, not to exceed 2 g per dose for patients with normal kidney function. Serum trough concentration should be measured prior to the fourth or fifth dose. Target trough concentrations of 15 – 20mg/ml are recommended. Doses >1.5 g should be infused over ≥ 1.5 h
Colistin	Dosing colistin using ideal body weight is recommended. Loading doses are suggested


Colistin

Multivariate analysis for independent predictors for associated NTX

Parameter	OR	95% CI	P value
BMI ≥ 31.5 kg/m ²	3.1	1.15 – 8.35	0.025
Diabetes	2.11	0.84 - 5.29	0.112
Length of stay (days) prior to CMS	1.04	0.99 – 1.08	0.078
Age (yr)	1.08	1.00 – 1.17	0.045

Gauthier TP et al., Antimicrob Agents Chemother, 2012

Linezolid in obese patients* AUC vs TBW

* Moderately to morbidly obese adults

Linezolid 600 mg IV BID in 2 obese patients

	Patient 1 Weight = 116 kg BMI = 40 kg/m²	Patient 2 Weight = 102 kg BMI = 35 kg/m²
AUC _{tot0-24h} (mg-h/l)	78.8	60.4
PI (ELF/serum)	115%	113%
AUC/MIC (2 mg/l)	39.4	30.2
$T_{free} > MIC (2 mg/l)$	48.8%	29.3%

De Pascale G et al., Minerva Anestesiol, 2012

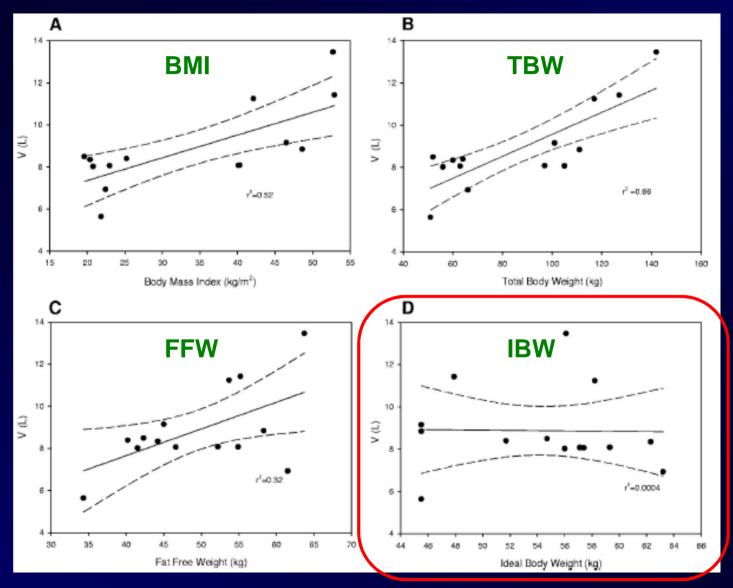
Dosing recommendations of commonly used antibiotics in obese patients with pneumonia

Linezolid Standard linezolid dosing with consideration of

continuous infusion is recommended

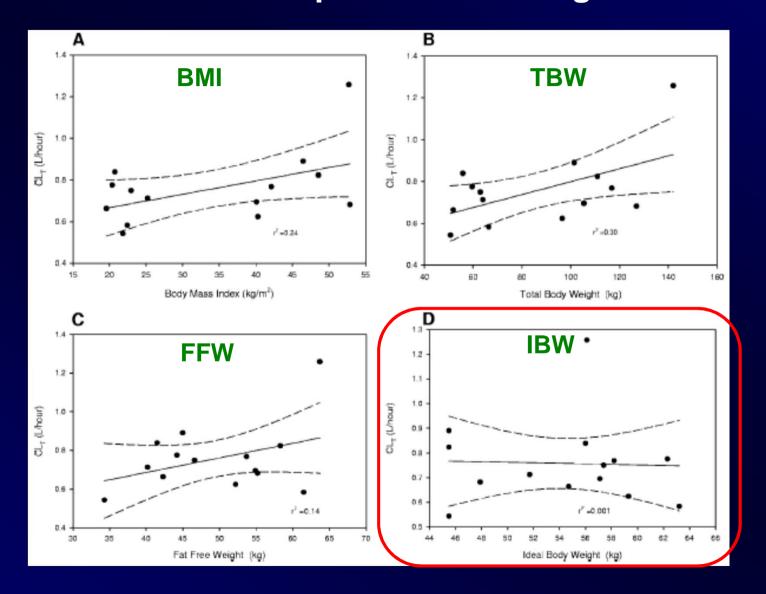
Macrolides Standard doses are recommended. Whether higher doses and longer durations

should be used remains uncertain


Fluoroguinolones Dose adjustment is probably not warranted for levofloxacin and moxifloxacin.

Doses of up to 800mg every 12h of ciprofloxacin should be considered in

morbidly obese patients


Al-Dorzi HM et al., Curr Opin Infect Dis, 2014

DaptomycinRelationships of Vd to weight

Pai MP et al., Antimicrob Agents Chemother, 2007

Daptomycin Relationships of CLT to weight

Pharmacokinetics of daptomycin in special populations

LIVER IMPAIRMENT

Subjects with moderate liver impairment do not require an adjustment in daptomycin dose or dose regimen

OBESITY

In obese subjects exposure to daptomycin (C_{max} , AUC) was increased \geq 30%. However, no adjustment in daptomycin dose or dose regimen should be required based solely on obesity.

Dvorchik B et al., J Clin Pharmacol, 2004; Dvorchik B and Damphousse D, J Clin Pharmacol, 2004

Daptomycin

Mean dose 8mg/kg/day for a median of 25 days (range 14-82 d) in 61 pts (29 M and 32 F, mean age 66,6 yrs)

3/58* (5.2) CPK levels > 10 times upper normal limit (grade 3) with muscoloskeletal symptoms after 24 days of therapy

* 2/3 pts were morbidly obese (BMI grade III)

Figueroa DA et al, Clin Infect Dis, 15 July 2009

Key points

- Obesity is associated with several alterations in antibiotic pharmacokinetics and pharmacodynamics
- Data on antibiotic dosing in obese patients are limited and come mainly from observational studies
- Obesity should be considered when dosing both hydrophilic and lipophilic compounds

Al-Dorzi HM et al., Curr Opin Infect Dis, 2014, MOD

TDM MIGHT BE VERY USEFUL FOR OPTIMAL DOSING