Strategie immunosoppressive e rischio infettivo nel trapianto di organo solido

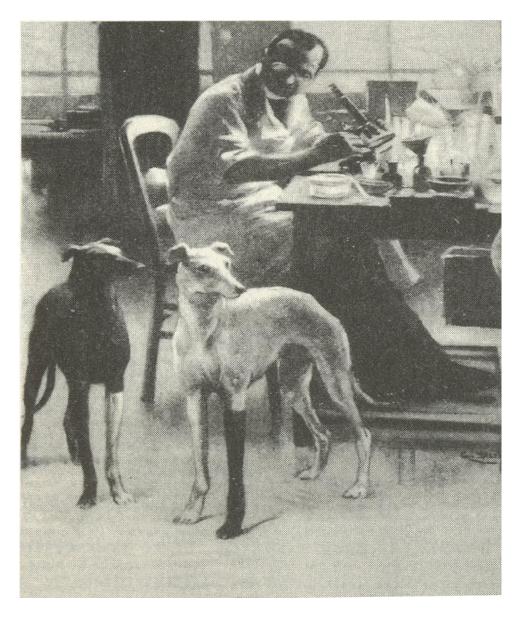
Franco Citterio

Director Renal Transplantation Unit

Department of General Surgery

Università Cattolica S. Cuore

Roma


franco.citterio@unicatt.it

Strategie immunosoppressive e rischio infettivo

✓ what we learnt

- √ immunosuppression and CMV
- ✓ what we would like to have

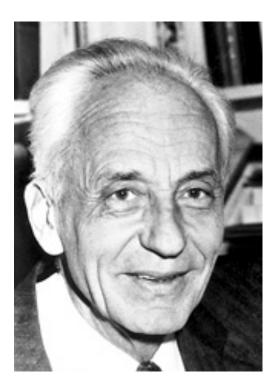
Alexis Carrel Nobel lecture 1912

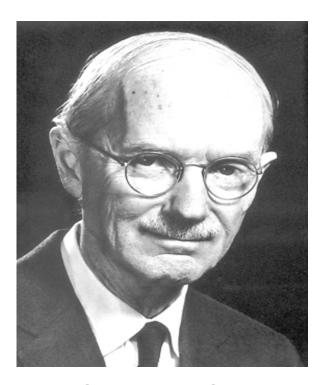
....Thus, while the problem of the transplantation of organs has been solved, from a surgical point of view...... We need a more fundamental study of the biological relationships existing between living tissues

The Nobel Prize in Physiology or Medicine 1960

"for discovery of acquired immunological tolerance"

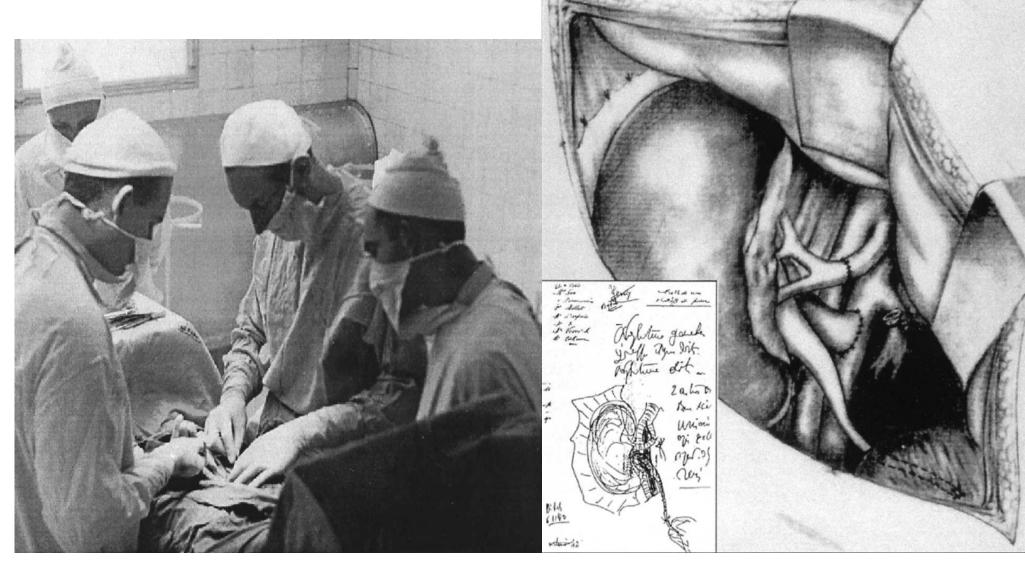
Sir Frank Macfarlane Burnet Sir Peter Brian Medawar




The Nobel Prize in Physiology or Medicine 1980

Baruj Benacerraf

Jean Dausset



George D. Snell

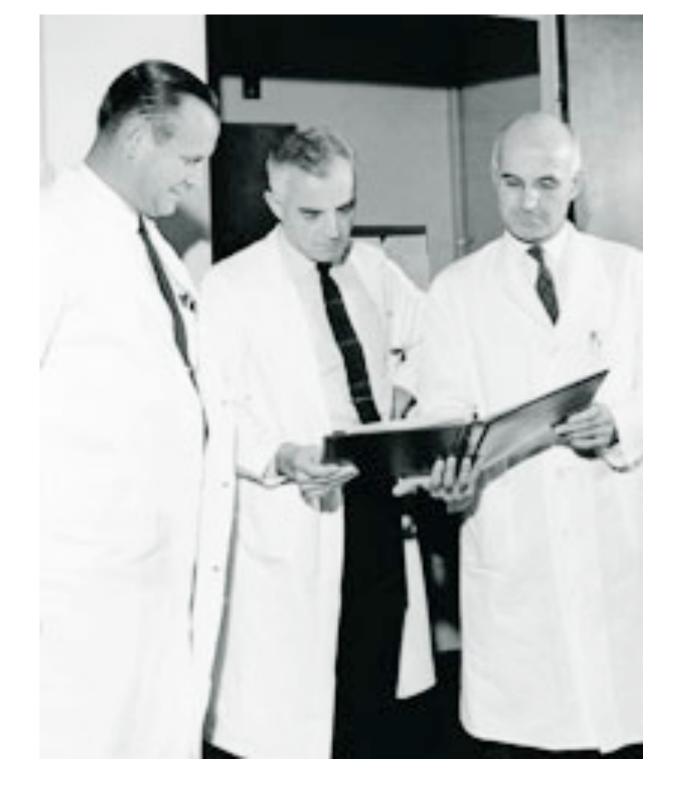
"for their discoveries concerning genetically determined structures on the cell surface that regulate immunological reactions".

Surgical technique for renal transplantation

Henry Kuss

1950

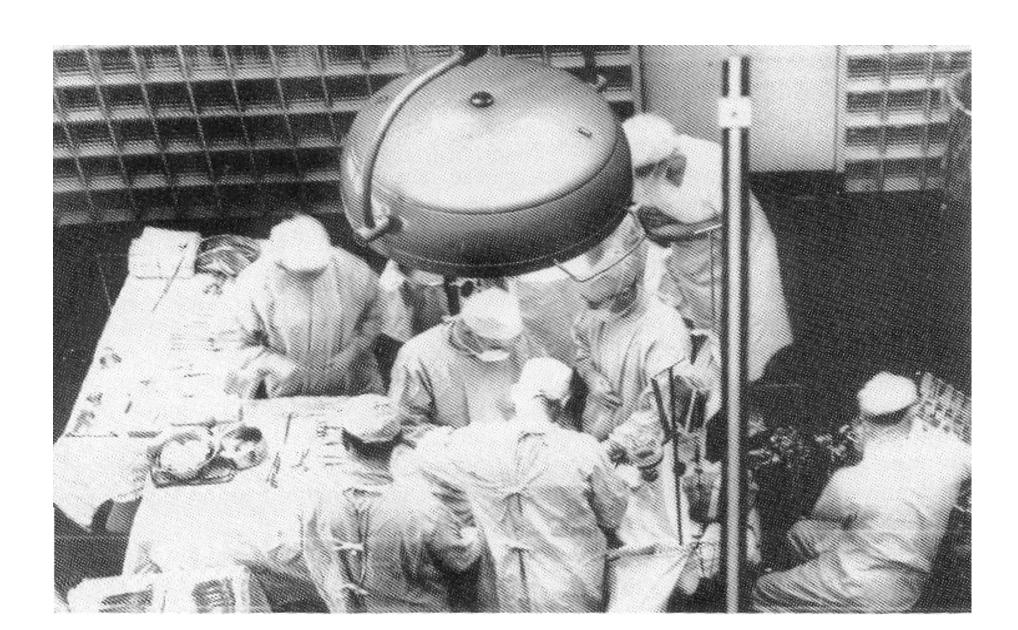
Surgical technique


Rejection / Tolerance

HLA differences

How to control the immune system?

The identical twins Herrick 1954 successful kidney transplant.



J. Hartwell Harrison

John P Merrill

Joseph E Murray

23 December 1954: first successful kidney tx

The identical twins Herrick leave the hospital the first participants in 1954 successful kidney transplant.

Joseph E. Murray

1954

the first successful human kidney transplant between twins in Boston.

1990 Nobel prize in Physiology & Medicine

Organ Donation

- living twins : genetic identity
- living related
- deceased cardiac death

1950

- Sub-lethal irradiation
- Azathioprine

1954 - 1962

Factors in successful renal transplantation

T. E. STARZL, M.D., PH.D.*

T. L. MARCHIORO, M.D.

D. RIFKIND, M.D., PH.D.

J. H. HOLMES, M.D.

D. T. ROWLANDS, JR., M.D.

W. R. WADDELL, M.D.

DENVER, COLO.

From the Departments of Surgery, Pathology, and Medicine, University of Colorado Medical Center and Veterans Administration Hospital

uring the interval from 15 to 2½ months ago, 45 patients were treated at the University of Colorado Medical Center with renal homografts obtained from living volunteer donors. As a consequence of this experience, many aspects of renal homotransplantation have come into focus in-

transplantation. Furthermore, the mechanisms that caused death will be documented in the unsuccessful cases, and suggestions made for changes in management which may, in the future, help avoid the previously encountered lethal complications.

Finally note will be made of several un-

Factors in successful renal transplantation (1964)

```
• Pts Surv 6m 27/45 60 %
```

- Graft Surv 6m 27/45 60 %
- Rejection 42/45 93 %

- Baseline : Splenectomy + Aza
- Rejection: 6g Steroid + Actinomycin +

Local Irradiation

.... to temper the vigor of the immunologic assault...... the most significant alteration to be instituted will be the use of prophylactic prednisone..... The value of this change in the immunosuppressive protocol is still highly speculative.

T. E. Starzl 1964

1950 - 1980

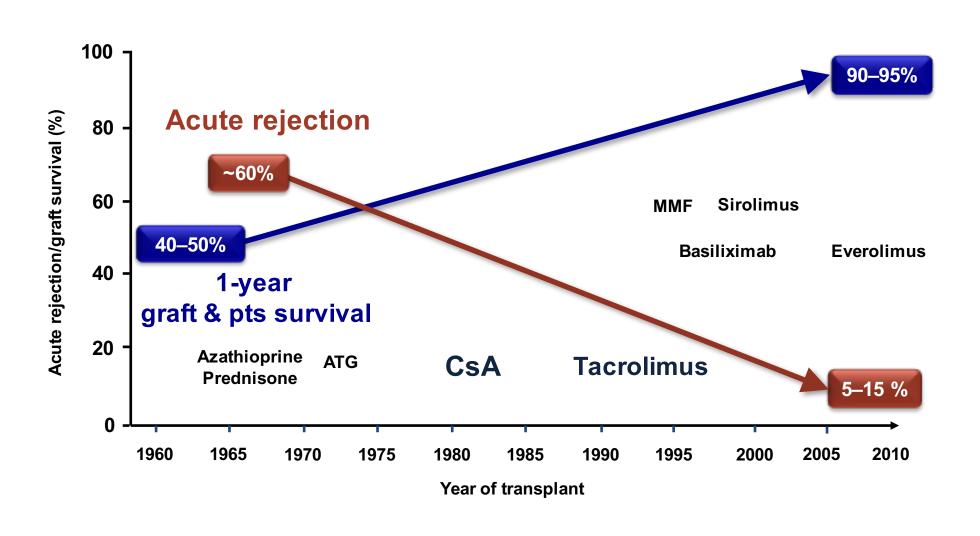
- Sub-lethal irradiation
- Azathioprine

1954 - 1959

- ALS ATG
- Azathioprine
- Steroids

1962 - 1978

Ciclosporine A

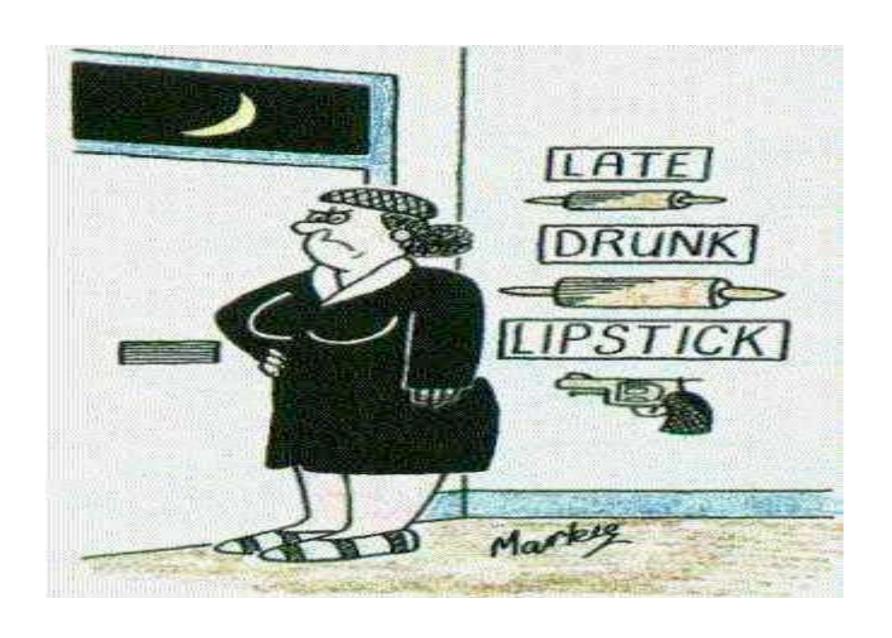

1979

Organ Transplantation

Evolution of immunosuppression

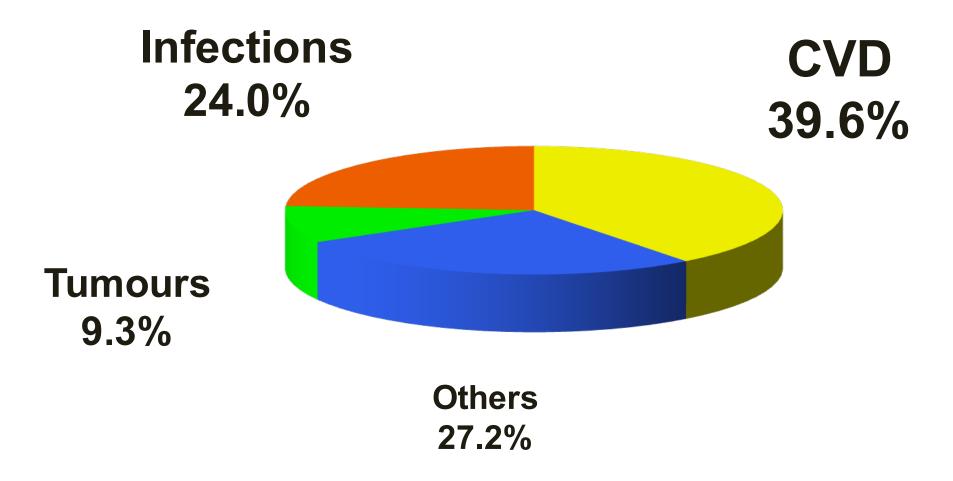
	Genetics	Immunosuppression	Year
Twins	Identity	None	1954
Related	Compatibility	Sublethal X ray + BM	1956
		Steroids	1959
Unrelated	Incompatibility	Azathioprine	1960
Deceased	Incompatibility	AZA + ster + ALS	1962

Considerable improvements have been made in the last 60 years in renal transplantation

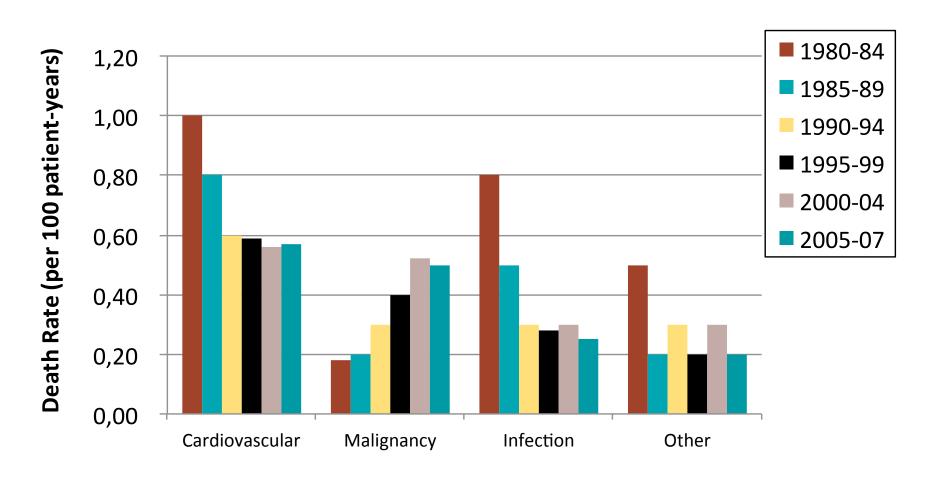

Renal Transplantation 2017

- Standard donor
- Old for Old
- Extended Criteria Donors
- Hyperimmunized pts
- Living donation
 - Standard / extended criteria donors
 - ABO incompatible
 - HLA incompatible positive crossmatch
- Deceased Cardiac Death

Immunosoppressione 2017


- ✓ CNIs Cyclosporine / Tacrolimus
- ✓ MMF / MPA / Aza
- √ mTORi Everolimus / Sirolimus
- √ Basiliximab
- √ Thymoglobuline
- ✓ Rituximab / Bortezomib
- ✓ Eculizumab
- ✓ Belatacept

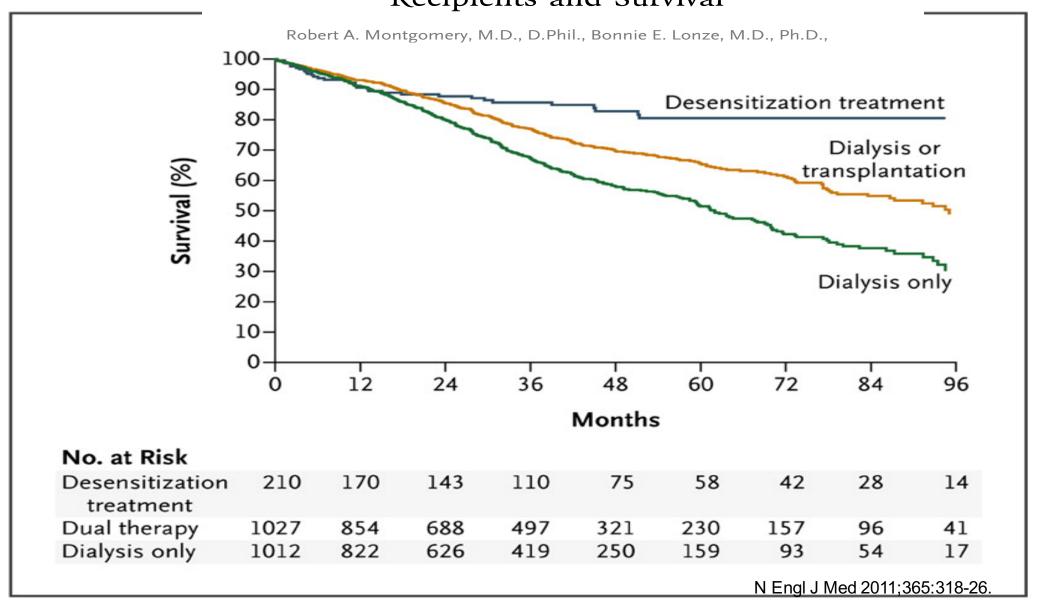
Una soluzione per tutti i casi



Causes of death with a functioning graft after renal transplantation

67.874 first renal transplants, 1994-2000

Adjusted death rates per 100 patient-years from cardiovascular disease, malignancy and infection reported in 5 yearly cohorts from 1980


Pilmore H, et al. Transplantation. 2010;89:851-857.

ABO incompatible tx & Hyperimmunized pts

+ positive cross-matches

ORIGINAL ARTICLE

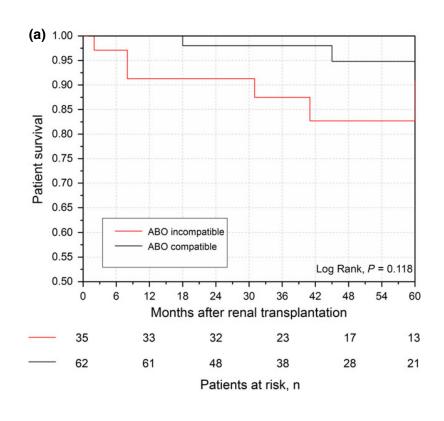
Desensitization in HLA-Incompatible Kidney Recipients and Survival

ORIGINAL ARTICLE

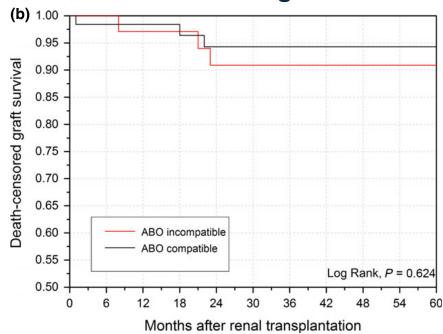
ABO desensitization affects cellular immunity and infection control after renal transplantation

Thomas Schachtner, 1,2 Maik Stein and Petra Reinke 1,2

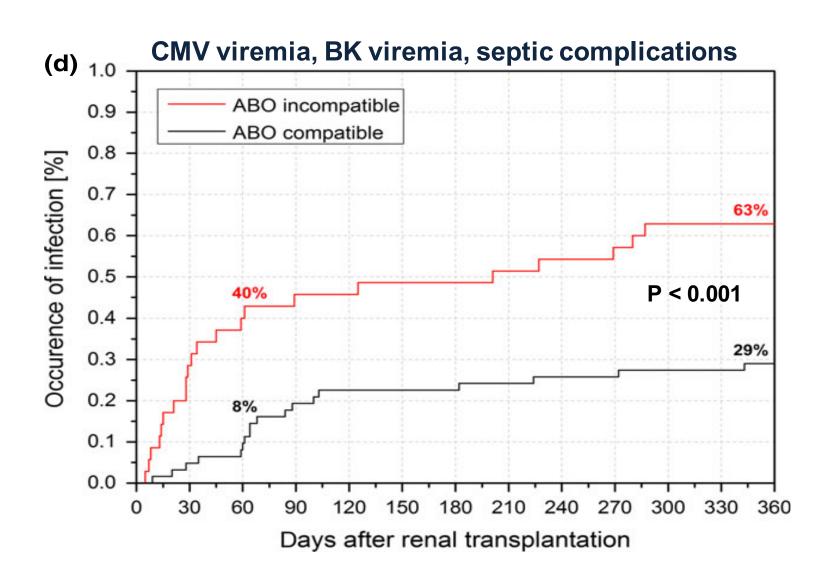
- 1 Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
- 2 Berlin-Brandenburg Center of Regenerative Therapies (BCRT), Berlin, Germany
 - √ 35 ABO-incompatible kidney transplant recipients
 - √ 62 ABO compatible KTRs, as controls
 - ✓ Samples collected before, at +1, +2, +3, +6, and +12 months post-transplantation.
 - ✓ CMV-, BKV-specific, and alloreactive T cells measured by interferon-c ELISPOT assay.
 - √ immunosuppression was quantified by enumeration of


lymphocyte subpopulations and cytokines.

Infectious complications: ABO compatible (cABO) versus ABO incompatible (iABO).


	cABO matched ($n = 62$)	ABO incompatible ($n = 35$)	P value
CMV seropositivity, n (%)	39 (63)	21 (60)	0.830
CMV viremia, n (%)	13 (21)	16 (46)	0.020*
Peak CMV viremia (copies/mL)*	$4.2 \times 10^3 (1.3 \times 10^3 - 6.5 \times 10^5)$	$3.2 \times 10^3 (1.0 \times 10^3 - 5.4 \times 10^5)$	
CMV D+R-, n (%)	6 (10)	5 (14)	0.519
CMV disease, n (%)	4 (6)	6 (17)	0.161
Transplant age at CMV viremia, months*	2 (0–9)	1 (0–11)	0.546
BK viremia, n (%)	6 (10)	8 (23)	0.130
Peak BK viremia (copies/mL)*	$9.2 \times 10^3 (4.5 \times 10^3 - 8.7 \times 10^4)$	$2.4 \times 10^4 (7.1 \times 10^3 - 8.4 \times 10^6)$	_
BK nephropathy, n (%)	0 (0)	3 (9)	0.044*
Transplant age at BK viremia, months*	4 (2–10)	3 (1–12)	0.395
EBV viremia, <i>n</i> (%)	7 (11)	0 (0)	0.047*
Peak EBV viremia (copies/mL)*	$1700 (1.0 \times 10^3 - 5.5 \times 10^3)$	_	-
PTLD, n (%)	1 (2)	0 (0)	1
Transplant age at EBV viremia, months*	6 (3–12)	_	_
Septic complications, n (%)	3 (5)	5 (14)	0.132
Severe sepsis/septic shock	0 (0)	4 (11)	0.015*
Site of infection, n (%)			
Urinary tract infection	2 (3)	2 (6)	0.618
Pneumonia	1 (2)	2 (6)	0.295
Others/unknown	0 (0)	1 (3)	0.361
Transplant age at sepsis, months*	4 (2–8)	3 (0–5)	0.359
Deaths from septic complications, n (%)	0 (0)	3 (9)	0.044*
Any infection, n (%)	18 (29)	22 (63)	0.001*

^{*}Median (range).


Pts survival: ABOi vs ABOc

Death censored graft survival

Infections: ABOi vs ABOc

ABO compatible (cABO) versus ABO incompatible (iABO).

ABO-incompatible:

- more likely to develop CMV infection, BKV- associated nephropathy, and severe sepsis (P = 0.001).
- poor HLA-match showed the highest rates of infections and inferior allograft function (P < 0.05).
- CD3+, CD4+ T-cell counts, interferon-c and IL-10 levels were lower in early post-transplantation (P < 0.05).
- impaired BKV and CMV-specific T-cell immunity (P < 0.05).
- lower frequencies of alloreactive T cells (P < 0.05).
- Desensitization procedures disrupt the T and B cells interaction and sinergy

Published in final edited form as:

Transplantation. 2013 September 15; 96(5): 476–479. doi:10.1097/TP.0b013e318299dc0e.

Cancer Risk Following ABO Incompatible Living Donor Kidney Transplantation (1)

Erin C. Hall, MD MPH,

Department of Surgery, Johns Hopkins School of Medicine; Division of Cancer Epidemiology and Genetics, National Cancer Institute

Eric A. Engels, MD MPH,

Division of Cancer Epidemiology and Genetics, National Cancer Institute

Robert A. Montgomery, MD DPhil, and

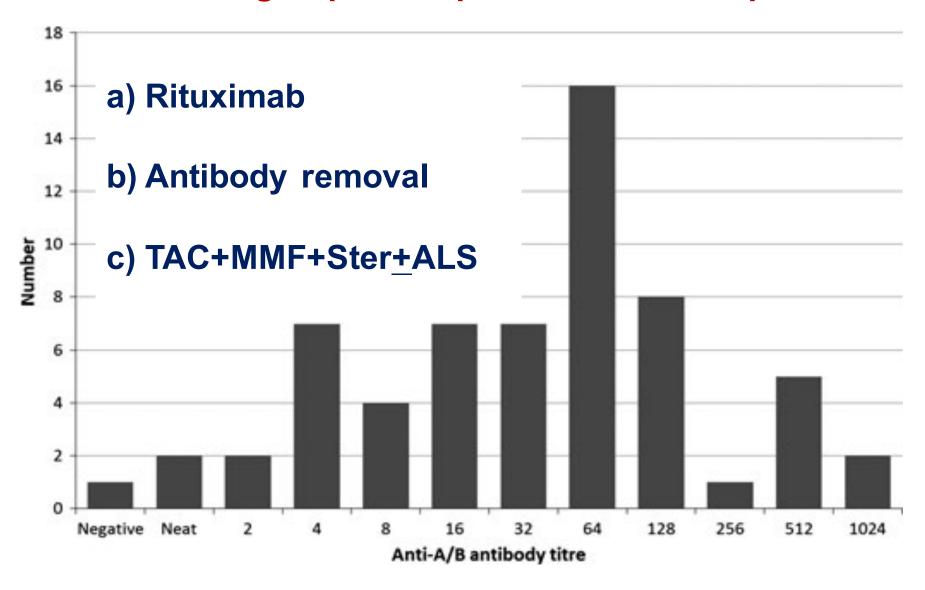
Department of Surgery, Johns Hopkins School of Medicine

Dorry L Segev, MD PhD

Department of Surgery, Johns Hopkins School of Medicine

- 318 ABOi recipients in the SRTS registry
- 7 ABOi recipients with cancers (non-Hodgkin lymphoma, Merkel cell carcinoma, gastric adenocarcinoma, hepatocellular carcinoma, thyroid cancer, pancreatic cancer, and testicular cancer)
- no demonstrable association between ABOi and cancer ABOi
- IRR 0.83, 95% CI 0.33–1.71, p=0.3
- ABOc matched control IRR 0.99, 95% CI 0.38–2.23, p=0.5).

Cancer risk after living donor kidney transplantation, comparing ABOi with ABOc matched ABO controls


	ABOi	ABOc (entire cohort)	ABOc (matched controls) ^a
All Cancer			
Rate ^b	7.1	8.5	7.1
IRR (95% CI) vs. entire cohort	0.86 (0.02–4.85)	Reference	
IRR (95% CI) vs. matched controls	0.99 (0.38–2.23)		Reference
NHL			
$Rate^{b}$	1.0	1.2	1.0
IRR (95% CI) vs. entire cohort	0.76 (0.02–4.29)	Reference	
IRR (95% CI) vs. matched controls	1.02 (0.02-8.38)		Reference

ABOi = ABO incompatible; ABOc = ABO compatible; IRR = incidence rate ratio; CI = confidence interval; NHL = non-Hodgkin lymphoma.

a) Matched 5 to 1 on age at transplantation, gender, race, zero HLA mismatch status, retransplantation, and year of transplant to ABOi recipients.

b) Per 1,000 person-years

Tailored desensitization strategies in ABO blood group incompatible renal transplantation

Tailored desensitization strategies in ABO blood group incompatible renal transplantation

3y GS death censored

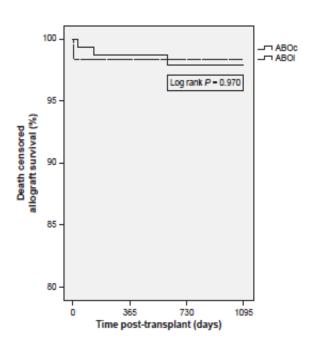


Figure 4 Kaplan-Meier survival curve of death-censored allograft survival at 3 years post-transplant.

1y Rejection free surv

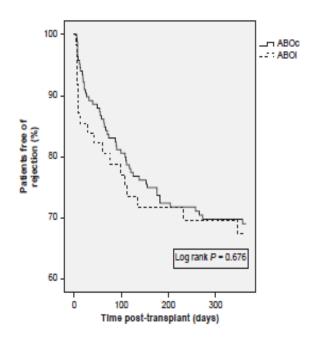
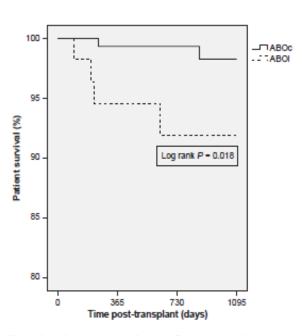
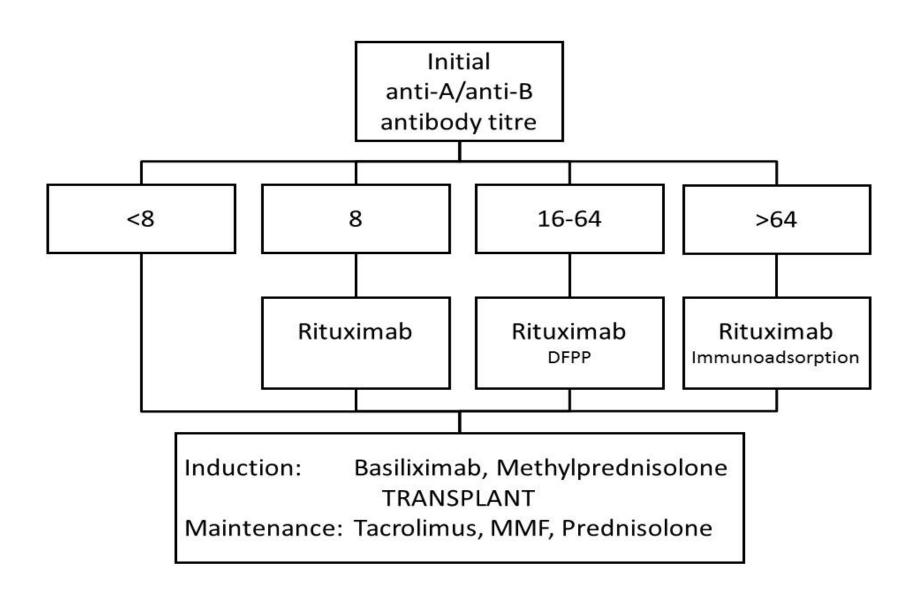
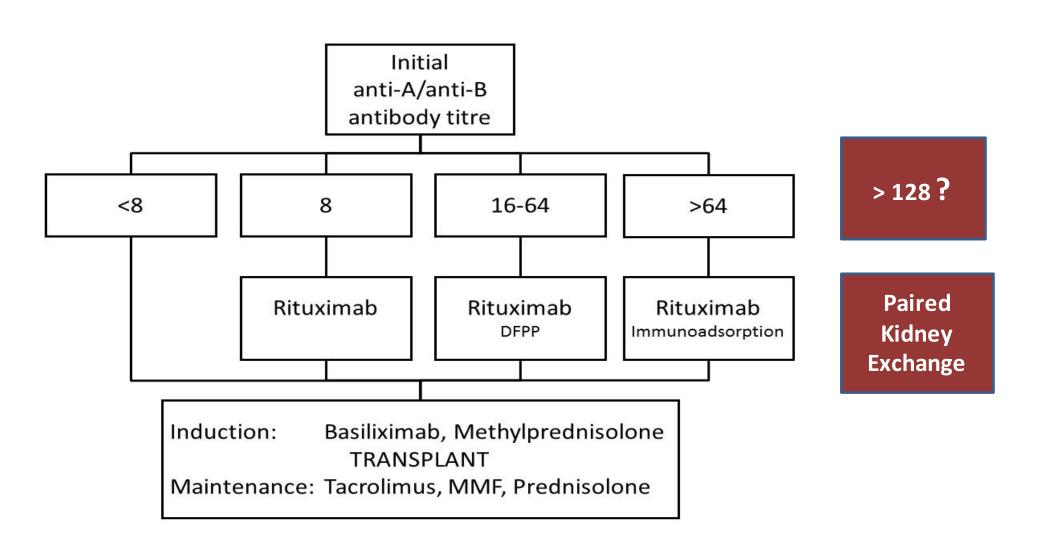


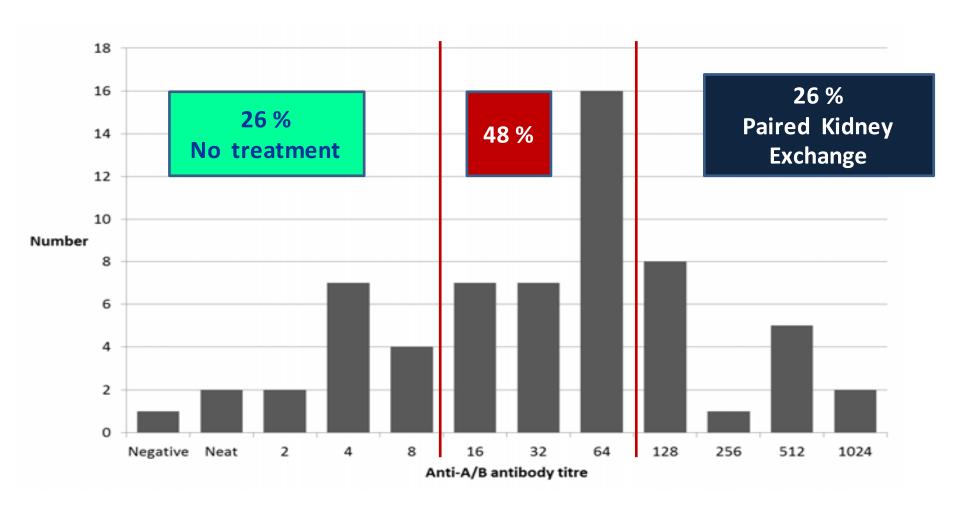
Figure 6 Kaplan-Meier survival curve of rejection-free survival 1 year post-transplant.

3y PT Surv


Figure 5 Kaplan-Meier survival curve of patient survival at 3 years post-transplant.

Guy's Hospital tailored minimal desensitisation strategy


Tailored desensitization strategies

in ABO blood group incompatible renal transplantation

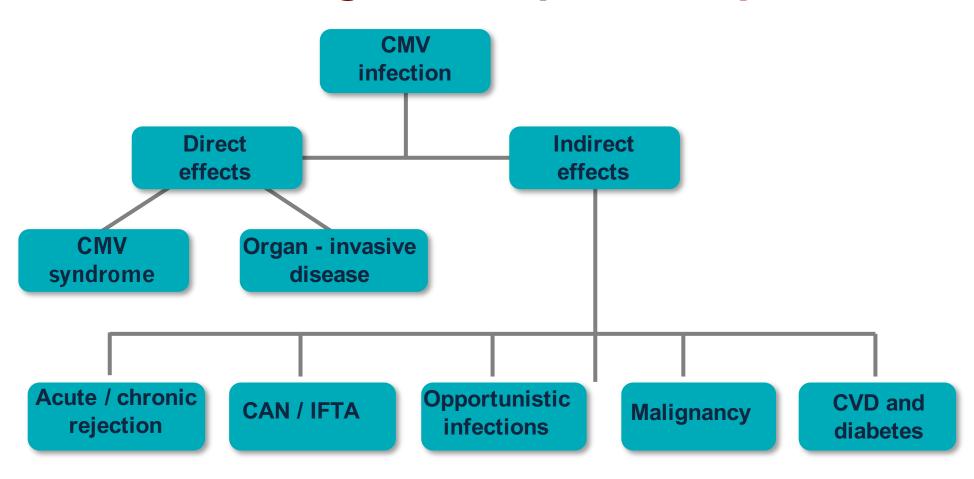
Guy's Hospital, London individualized desensitisation strategy

ABOi renal transplant recipients

Strategie immunosoppressive e rischio infettivo

✓ what we learnt

- √ immunosuppression and CMV
- ✓ what we would like do


Unmet needs in CMV for the risk management of CMV infections

- CMV infection and disease
 - occur frequently after tx and are causes of CAN / IFTA, death
 - are independent risk factors for renal allograft rejection
 - CMV prophylaxis and pre-emptive antiviral therapy is addressed in recent guidelines.

Moreover:

- Late-onset disease is still observed
- Antiviral resistance, although infrequent, has emerged
- Evidence that mTOR-inhibitors may reduce replication

CMV infection has multiple detrimental effects in organ transplant recipients

CMV infection and renal transplantation

- Prophylaxis vs preemptive therapy
- Preemptive therapy
 - Units / copies PCR-DNA, when to treat?
 - Should we monitor specific CMV- quantiferon?
 - Should we monitor Elispot?

Benefits and limitations of prophylaxis versus preemptive therapy

Effect	Prophylaxis	Preemptive
CMV disease	+++	+++
Late CMV disease	++	_
CMV Relapse/treatment failure	++	++
Fewer opportunistic infections	+++	+
Improved graft survival	++	_
Prevention of rejection	++	_
Survival	++	_
Prevention other viruses	+	_
Post transplant lymphoma	+	_
Kaposi sarcoma	+	_
Safety	++	+++
Easier logistics	+++	+
Lower drug cost	+ ,	+++ 📥
Lower monitoring cost	+++	+
Resistant CMV	++	++

⁺ is representative of the ease of use and strength of the evidence, +++ is the strongest evidence or favors the approach listed, a—means no evidence exists. Modified from Kotton et al. (2).

C. Kotton American Journal of Transplantation 2013; 13: 24–40

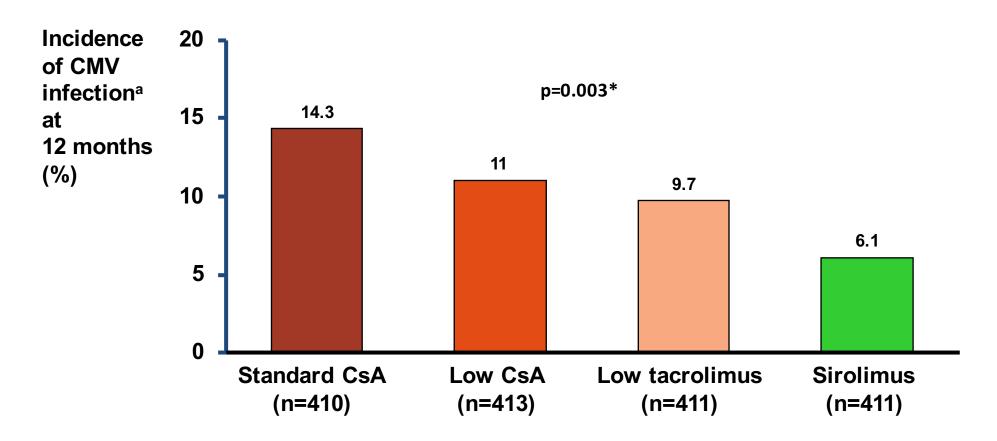
Several recent studies have reported reduced post-transplant CMV incidence with mTORis

Study	Duration, months	Immunosuppression	Patients, n	CMV incidence at 12 months, %
Tedesco-Silva et al	12	Everolimus + low CsA + steroids	112	0.9
2007		Everolimus + Iow CsA + steroids + Bas	117	2.6
	36	Everolimus + SD CsA + steroids + Bas	53	1.9
Nashan <i>et al</i> 2004		Everolimus + Iow CsA + steroids + Bas	58	0
	12	SD CsA + MMF + steroids	410	14.3
Ekberg <i>et al</i> 2007		Low CsA + MMF + steroids + Dac	413	11.0
ELITE-Symphony		Low tacrolimus + MMF + steroids + Dac	411	9.7
study		Low sirolimus + MMF + steroids + Dac	411	6.1
	12	MMF + steroids + Dac	179	12.8
		Low CsA + MMF + steroids +Dac	183	10.9
Ekberg et al 2007		SD CsA + MMF + steroids	173	13.9
CAESAR study	24	CsA + azathioprine + ATG	80	41
		CsA + MMF + Bas	80	20
Hernandez et al 2007		Tacrolimus + MMF + Bas	80	25
	12	Sirolimus + MMF + prednisone	81	3
Larson et al 2006		Tacrolimus + MMF + prednisone	84	12

CMV, cytomegalovirus; mTORi, mammalian target of rapamycin inhibitor; CsA, cyclosporin; Bas, basiliximab; SD, standard dose; MMF, mycophenolate mofetil; Dac, daclizumab; EC-MPS, enteric-coated mycophenolate sodium; ATG, anti-thymocyte globulin

The SYMPHONY study

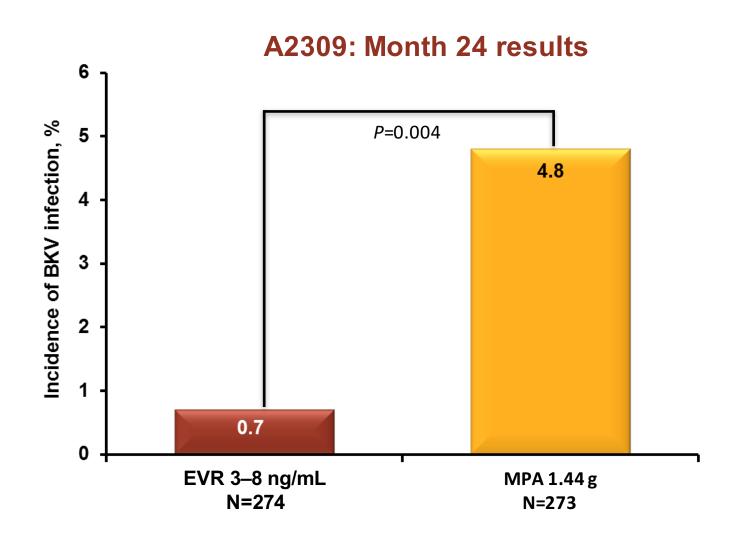
Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation

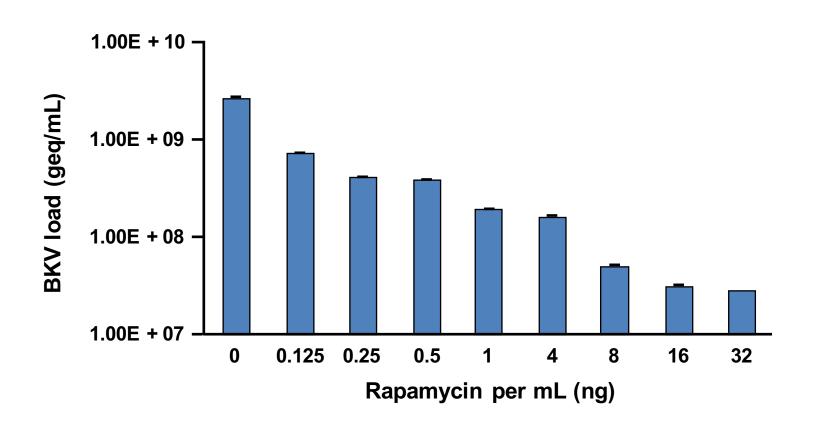

The NEW ENGLAND JOURNAL of MEDICINE

Regimen tested	n	eGFR (C-G)	BPAR (%)	Allograft Survival (%)
Standard-dose CSA (100-200 ng/mL thereafter)	390	57 ± 25	30.1	91.9
Low-dose CSA (50-100 ng/mL)	399	59 ± 25	27.2	94.3
Low-dose TAC (3-7 ng/mL)	401	65 ± 27	15.4	96.4
Low-dose SRL	399	57 ± 27	40.2	91.7

BPAR, biopsy proven acute rejection; CsA, cyclosporine A; eGFR, estimated glomerular filtration rate; SRL, sirolimus; TAC, tacrolimus.

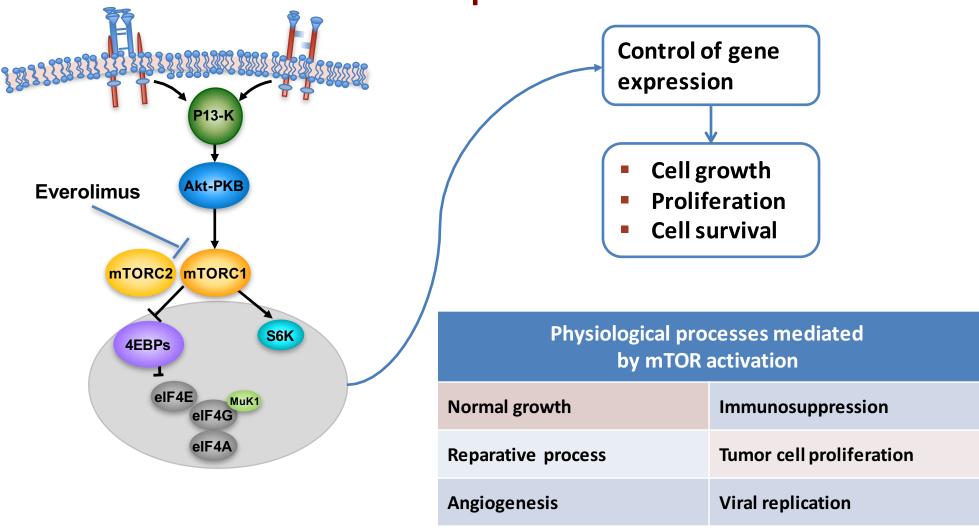
Ekberg, et al, New Eng J Med 2007;357:2562-2575.


Symphony: significantly lower incidence of CMV infection with an mTORi than CNIs


^{*}p value across all arms; significant between-group difference

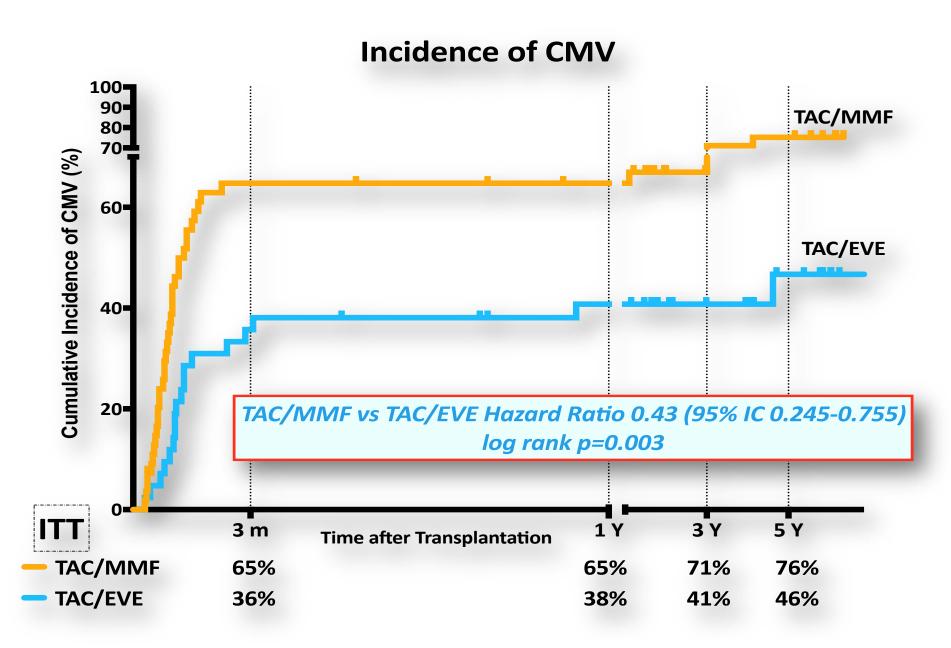
^aDetermined from reported adverse events CMV, cytomegalovirus; mTORi, mammalian target of rapamycin inhibitor; CsA, cyclosporin; CNI, calcineurin inhibitor

BKV infections are less frequent with *de novo* everolimus + low CNI at 24 months



BKV replication in human renal tubular epithelial cells is inhibited by mTORi

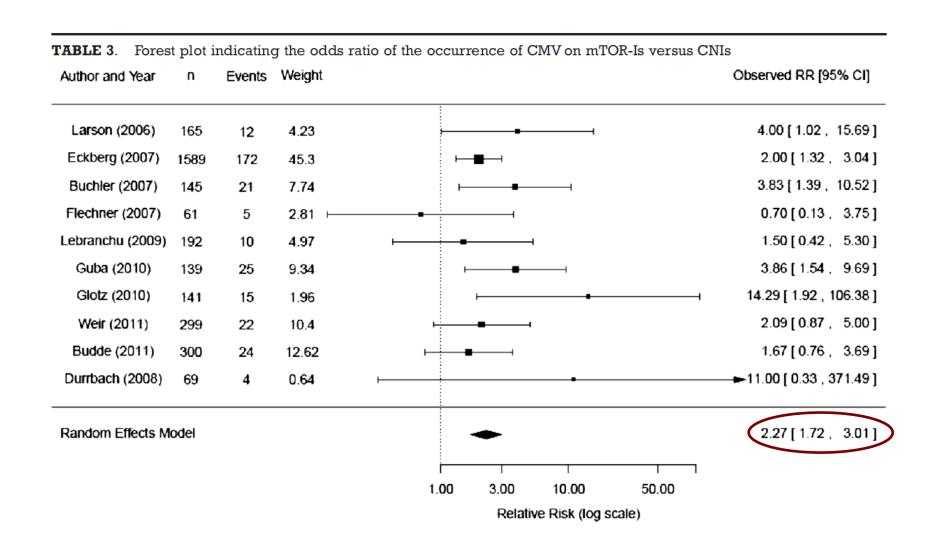
Potential mechanisms for antiviral action of mTORis


Everolimus has a central role in several pathways related to proliferation

AKT/PKB, protein kinase B; elF4, eukaryotic translation initiation factor; mTOR, mammalian target of rapamycin; mTORC, mammalian target of rapamycin complex; Pl3K, phosphatidylinositol 3-kinase; S6K, S6 kinase.

Populo H, et al. Int J Mol Sci 2012;13:1886–1918; Buchkovich NJ, et al. Nature Reviews Microbiology 2008; 6:266–75.

UCSC CMV preemptive therapy


Is Cytomegalovirus Prophylaxis Dispensable in Patients Receiving an mTOR Inhibitor—Based Immunosuppression? A Systematic Review and Meta-Analysis

Joachim Andrassy,^{1,5} Verena S. Hoffmann,² Markus Rentsch,¹ Manfred Stangl,¹ Antje Habicht,³ Bruno Meiser,³ Michael Fischereder,⁴ Karl-Walter Jauch,¹ and Markus Guba¹

University Hospital Grosshadern, Ludwig Maximilian's University, Munich D

- ✓ The current literature reviewed for RCTs in SOT comparing mTOR-I with a non-mTOR-I, CNI based treatment.
- ✓ Cytomegalovirus incidence was assessed in studies comparing
 - ❖ mTOR-In based vs a CNI based therapy: 10 trials, n=3,100 pts
 - ❖ mTOR-I + CNI based vs a CNI-based therapy 15 trials, n=7,100 pts

CMV occurrence mTORsi vs CNIs

CMV occurrence mTORsi + CNIs vs CNIs

1214 | www.transplantjournal.com

Transplantation • Volume 94, Number 12, December 27, 2012

TABLE 4. Forest plot indicating the odds ratio of the occurrence of CMV on a combination of mTOR-Is and CNIs versus CNIs

Author and Year	n	Events	Weight		Observed RR [95% CI]
Kahan(2000)	719	33	7.91	—	1.72 [0.85 , 3.48]
Kahan(2003)	1295	99	9.95	⊢	0.98 [0.62 , 1.54]
Keogh (2004)	126	12	5.32	├	3.78 [1.28 , 11.17]
Ciancio (2004)	150	3	1.68		—4.00 [0.37 , 43.06]
Kandaswamy (2005)	239	12	5.16		1.33 [0.44 , 4.06]
Vitko (2005)	588	66	9.93	⊢-■	2.88 [1.82 , 4.57]
Kobashigawa (2006)	334	31	4.96	—	4.50 [1.43 , 14.20]
Levy(2006)	119	7	2.1	·I	0.49 [0.06 , 3.97]
Vitko (2006)	977	55	9.49	⊢	1.80 [1.08 , 3.00]
Vigano (2007)	634	75	10.15	⊢-≣	2.96 [1.92 , 4.56]
Sampaio (2008)	100	12	5.44		1.00 [0.35 , 2.89]
Vigano (2010)	174	30	7.22	⊢	3.60 [1.63 , 7.94]
Masetti (2010)	78	10	4.84		3.00 [0.93 , 9.70]
van Gurp (2010)	634	47	7.83	⊢	4.29 [2.10 , 8.74]
Tedesco (2011)	833	45	8.03	⊢	6.94 [3.49 , 13.81]
Random Effects Model				•	2.45 [1.76 , 3.41]
				<u> </u>	
				1.00 3.00 10.00	50.00
				Relative Risk (log scale)	

Conclusions

Unmet need in CMV for the risk management of CMV infections

 CMV infection, syndrome and disease are reduced with Everolimus vs standard CNIs therapy

 CMV prophylaxis may become dispensable in pts receiving mTORsi?

Need for a clinical trial: CMV standard prophylaxis
 vs preemptive therapy vs no prophylaxis

Strategie immunosoppressive e rischio infettivo

✓ what we learnt

- √ immunosuppression and CMV
- ✓ what we would like to have

Our Goal is immunosuppression-free state

(IFS) post-transplantation

doi: 10.1111/ajt.12731

Long-Term Results in Recipients of Combined HLA-Mismatched Kidney and Bone Marrow Transplantation Without Maintenance Immunosuppression

T. Kawai^{1,*}, D. H. Sachs², B. Sprangers³, T. R. Spitzer⁴, S. L. Saidman⁵, E. Zorn¹, N. Tolkoff-Rubin¹, F. Preffer⁵, K. Crisalli¹, B. Gao¹, W. Wong³, H. Morris³, S. A. LoCascio³, P. Sayre⁶, B. Shonts³, W. W. Williams Jr.¹, R.-N. Smith⁵, R. B. Colvin⁵, M. Sykes³ and A. B. Cosimi¹ to improve consistency of the results, this study shows that long-term stable kidney allograft survival without maintenance IS can be achieved following transient mixed chimerism induction.

Keywords: Chimerism, immunobiology, kidney transplantation, living donors, tolerance

Abbreviations: AKI, acute kidney injury; BAFF, B cell

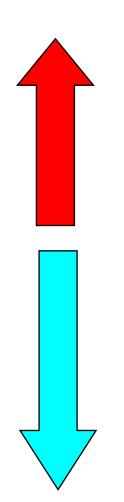
Posttransplant complications

A. Conventional immunosuppression

No.	Age at Tx	Sex	Survival	Creat	HTN	Hyper-lipid	De novo DM	Malignancy	Infection ¹	No. of drug IS+others
1	33	F	>11.6 years	1.1	_	+	_	_	+	3 + 5
2	42	F	>11 years	1	+	+	+	_	+	3 + 7
3	36	F	>10.8 years	1.4	+	+	+	_	_	2 + 12
4	38	F	>10.8 years	2.3	+	+	_	_	+	2 + 8
5	40	F	>10.7 years	1.2	+	+	_	_	+	3 + 5
6	42	F	>10.6 years	1	+	_	_	SCC BCC	_	2 + 1
7	26	M	>10.3 years	2	+	+	+	_	_	2 + 6
8	23	M	>9.7 years	1.3	+	_	_	_	_	3 + 2
9	27	М	>9.5 years	1.5	+	+	+	Melanoma, SCC	-	2+3
10	40	M	>9.2 years	1.9	+	+	+	_	_	3 + 9
11	20	F	>8.5 years	1.1	_	_	_	_	_	3 + 4
12	42	M	>8.4 years	2.1	+	_	_	_	_	2 + 2
13	32	M	>8.3 years	1.3	+	+	+	_	_	3 + 8
14	26	M	>8.2 years	0.95	+	+	+	_	+	2 + 9
15	42	F	>8.1 years	1.4	_	_	_	_	_	3 + 3
16	43	M	>7.9 years	1.2	+	+	_	_	_	3 + 5
17	31	M	>7.7 years	1.6	+	+	_	_	_	3 + 5
Graft	loss									
18	37	F	29 days	reTx	NA	NA	NA	NA	NA	NA
19	44	M	3.9 years	On HD	+	_	_	_	_	$2 + 5^3$
20	45	M	6.3 years	On HD	+	+	_	_	_	$2 + 12^3$
21	22	M	7.1 years	On HD	+	_	_	_	_	$3 + 3^3$
	Incidence of	comp	lication (p-value	4)	85% (p = 0.04)	65% (p = 0.005)	35% (ns ⁵)	10% (ns)	25% (ns)	

Posttransplant complications in tolerance

B. Tolerance protocol


No. ⁶	Age at Tx	Sex	Survival	Creat	HTN	Hyper-lipid	De novo DM	Malignancy	Infection	No. of drugs IS+others
1	22	F	>11 years	1.1	_	_	_	_	_	0+1
2	22	F	>10.5 years	2.2	+	_	_	_	_	$1+1^{7}$
4	28	F	>8.8 years	2.0	+	_	_	_	_	$2 + 2^8$
5	46	F	>7.8 years	2.5	+	_	_	_	_	$1+1^9$
6	35	F	>4.8 years	1.5	_	_	_	_	_	0 + 1
7	37	F	>4.6 years	0.8	_	-	-	_	_	0
9	22	M	>4.2 years	1.1	_	-	-	_	_	0
Graft lo	OSS									
3	39	M	10 days				NA			
8	36	F	6 months				NA			
10	26	M	3 years			NA	(on IS after 10	months)		
Incider	nce of compli	cation	-		43%	0%	0%	0%	0%	

Posttransplant complications in tolerance

B. Tole	B. Tolerance protocol									
No. ⁶	Age at Tx	Sex	Survival	Creat	HTN	Hyper-lipid	De novo DM	Malignancy	Infection	No. of drugs IS+others
1	22	F	>11 years	1.1	_	_	_	_	_	0+1
2	22	F	>10.5 years	2.2	+	_	_	_	_	$1+1^{7}$
4	28	F	>8.8 years	2.0	+	_	_	_	_	$2 + 2^8$
5	46	F	>7.8 years	2.5	+	_	_	_	_	$1+1^9$
6	35	F	>4.8 years	1.5	_	_	_	_	_	0 + 1
7	37	F	>4.6 years	8.0	_	_	_	_	_	0
9	22	M	>4.2 years	1.1	_	_	_	_	_	0
Graft l	OSS									
3	39	M	10 days				NA			
8	36	F	6 months				NA			
1 <u>0</u>	26	М	3 years							
			tolera	<u>nce</u>	43	0	0	0	0 %	
Complications		ns	no toleran	ce	85	65	35	10	25 %	

BALANCED

Immunosuppression +

rejection

infections

neoplasia