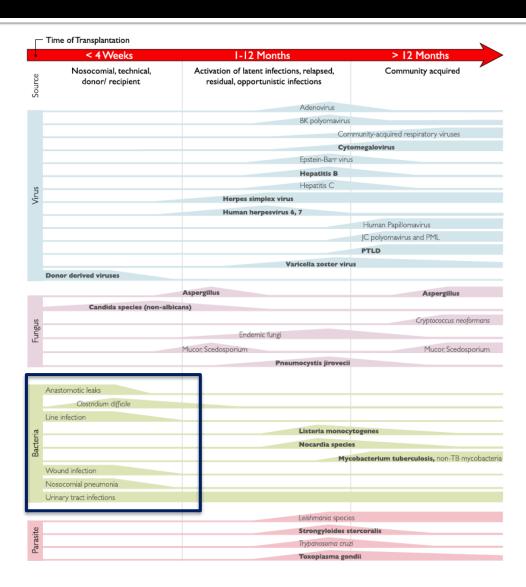
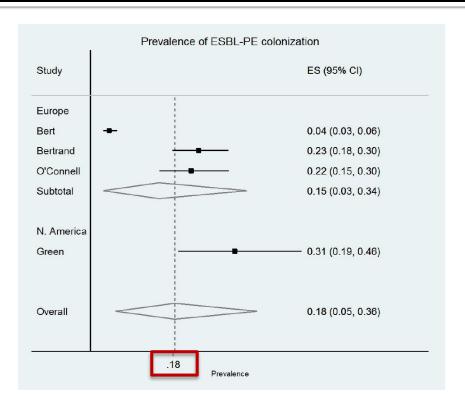

Gram Negative Infections in Solid Organ Transplantation

Christian van Delden MD
Director Transplant Infectious Diseases Unit
Service of Infectious Diseases and
Service of Transplantation
University Hospital Geneva, Switzerland
christian.vandelden@hcuge.ch




Disclosures

- Astellas: grant investigator, scientific advisor
- Basilea: grant investigator, scientific advisor
- Debiopharm: scientific advisor
- Gilead: scientific advisor
- MSD: grant investigator, scientific advisor
- Pfizer: scientific advisor
- Sanofi: scientific advisor

When do gram negative infections occur after solid organ transplantation?

Prevalence of colonization with ESBL *Enterobacteriaceae* in SOTr

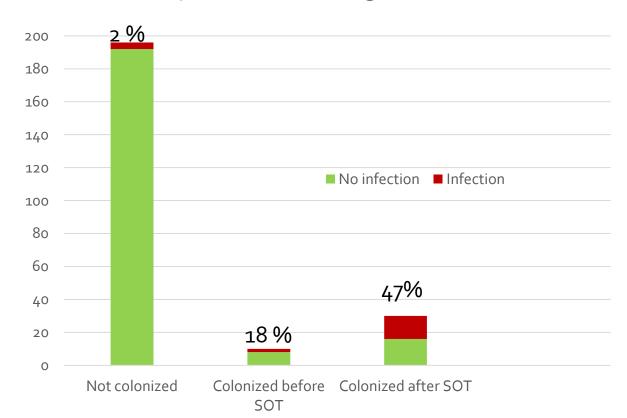
ESBL colonization rate in SOTr:

- Higher than healthy population (14%)
- Similar to patients with malignancies (19%)

Surveillance screening protocols?

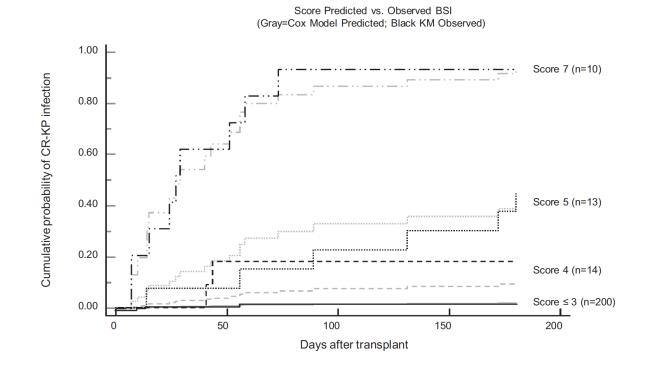
Colonization with ESBL producing *Enterobacteriaceae* in liver transplant recipients

- 317 French liver transplant recipients screened before liver transplantation for ESBL colonization (2009-2011)
- 50 (16%) harbored ESBL producing Enterobacteriaceae
- Independent risk factors were:
 - Previous exposure to b-lactams
 - Previous infection with an ESBL producing bacteria
 - History of spontaneous bacterial peritonitis

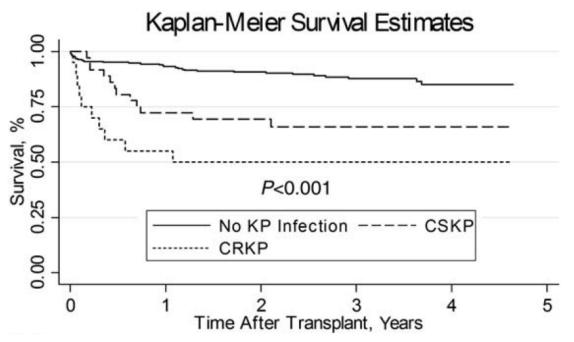

Patients at risk might benefit from intraoperative prophylaxis and empirical antibiotic treatments

Outcome associated with colonization of liver transplant recipients by KPC-producing *K. pneumonia*

- Outbreak in a German center involving 103 patients with a KPC type
 2-producing *K. pneumoniαe* (2010-2013)
- No routine pre- and post- transplant surveillance during the outbreak
- During outbreaks regular screening of liver transplant candidates might be indicated
- Patients with pre-transplant colonization should be considered liver transplant candidates only with extreme caution
 - 8 (89%) progressed to infection, 5 (56%) bacteremic
 - Mortality was increased from 11 to 78%


Infection with carbapenem- resistant *K. pneumoniae* after liver transplantation according to colonization status

- 237 liver transplant recipients
 - Pre-transplant screening : 11 CR-KP carriers
 - Post-transplant screening: 30 CR-KP carriers


Risk factors and risk score for infection with carbapenem-resistant *K. pneumoniae* after liver transplantation

Variable	Hazard ratio	95% CI	р	Risk score points
Renal replacement therapy	4.75	1.64–13.70	0.004	2
Mechanical ventilation > 48 h	5.74	1.84-17.82	0.001	2
Histological recurrence of HCV	9.70	2.42-36.09	0.001	2
CR-KP rectal carriage at any time	16.65	5.43–51.01	<0.0001	3

Outcome of liver transplant recipients with infections due to carbapenem-resistant *K.* pneumoniae

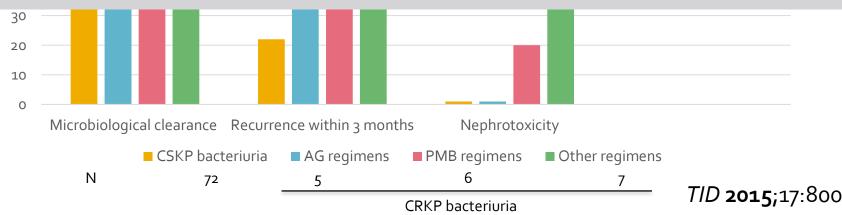
Columbia University Medical Center (2010-2013)

12 months post liver transplant:

- 304 liver transplant recipients
- 20 CRKP infections (7%)
- 36 CSKP infections (12%)

Risk factors for carbapenem-resistant K. pneumoniae UTI in kidney transplant recipients

- Diabetes mellitus^{1,2}
- Previous antibiotic exposure^{1,2}
- Previous UTI/relapsing infection^{1, 2}
- Delayed graft function¹
- Simultaneous SOT²
- Deceased donor²
- Length of pre-transplant hospitalization²
- CRKP infection/colonization²


Outcome of treated episodes of carbapenemsusceptible and resistant *K.pneumoniae* bacteriuria according to treatments

- Columbia University and Weill Cornell Medical Centers
 - 1852 kidney transplant recipients from 2007 to 2010
 - 18 treated CRKP bacteriuria
 - 72 treated CSKP bacteriuria

Carbapenem resistant bacteriuria is associated with lower microbiological cure,

more frequent recurrence, increased mortality and nephrotoxicity

An international consortium for the clinical study of bloodstream infections caused by multidrug-resistant Enterobacteriaceae in solid organ transplantation

ClinicalTrials.gov Identifier: NCT02852902

Objectives

Clinical study

✓ To assess the efficacy and safety of various antibiotic regimes for the treatment of bloodstream infections caused by MDR Enterobacteriaceae in SOT patients.

Microbiological study

- ✓ To generate a collection of isolates associated with the clinical cases recorded in the database.
- ✓ To evaluate the in vitro activity of specific antimicrobials against these isolates, study the genetic basis of resistance and the molecular epidemiology of the strains.

Design: International, multicentric, pre-registered, retrospective, cohort study. Clinical episodes occuring from 2000 to 2015.

An international consortium for the clinical study of bloodstream infections caused by multidrug-resistant Enterobacteriaceae in solid organ transplantation

ClinicalTrials.gov Identifier: NCT02852902

Preliminary summary of results

16 countries, 46 centers

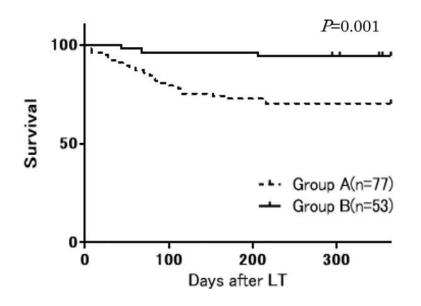
Country	Centers	
Spain	11	
Italy	7	
Brazil	4	
USA	4	
Singapore	1	
Israel	1	
Turkey	4	
UK	1	
Switzerland (STCS)	6	
Greece	1	
Belgium	1	
South Africa	1	
Sweden	1	
France	1	
Malta	1	

773 clinical cases collected

Type of SOT	n (%)
Kidney	472 (61,1)
Liver	228 (29,5)
Heart	48 (6,2)
Lung	19 (2,5)
Pancreas	3 (0,49)
Pancreas-kidney	9 (1,2)
Multiorgan	12 (1,6)

Enterobacteriaceae	n (%)	
E. coli	335 (43,3)	
K. pneumoniae	374 (48,4)	
Others	64 (8,3)	
Betalactamase type		
ESBL	521 (67,4)	
Carbapenemase	139 (18)	
ESBL+Carbapenemase	48 (6,2)	

Microbial collection: 161 isolates


Isolates	n (%)
K.pneumoniae	74 (46,0)
E.coli	32 (38,5)
E.cloacae	8 (5,0)
E.coli BLEE	5 (3,0)

Type of enzyme	n (%)
ESBL	115 (71,4)
Carbapenemase	31 (19,3)
ESBL+carbapenemase	4 (2,5)

Bundled interventions to control infections following transplantation

- Kyoto University Hospital
 - 130 liver transplant recipients
 - A: 77 LTr 2011-2012 (before intervention)
 - B: 53 LTr 2013-2014 (after intervention)
 - Bundled intervention including:
 - LT candidates required to be able to walk independently (less sarcopenic)
 - Improved hand hygiene and US device decontamination
 - Serum procalcitonin (PCT) measurements to decide on empirical antibiotic therapy (days 2-5-7-10-14-21-28), cut offs 0.5< and >2.0 ng/mL

Effectiveness of bundled strategies against infections post-liver transplant

	Group A (n = 77)	Group B $(n = 53)$	P Value
Death within 1 year, n (%)	22 (29)	3 (6)	0.001
Death due to infection, n (%)	9 (12)	1 (2)	0.04
Bacteremia, n (%)	34 (44)	14 (26)	0.03
Detection of multiple bacteria strains, n (%)	14 (18)	2 (4)	0.01
Postoperative hospital length of stay, days	85.4	63.5	0.048
Duration of antibiotic administration, days	42.3	25.1	0.002
Duration of carbapenem administration, days	15.1	5.2	< 0.001

Bundled interventions were effective in preventing infections and improving survival

How to reduce the risk of gram negative infections in SOT recipients

- Control measures should include
 - Increase compliance with strict hospital hygiene protocols
 - Limitation of pre- and post- transplant antibiotic exposure
 - avoidance of broad-spectrum prophylaxis and of prolonged pre- or posttransplant antibiotic therapies
 - Shorten endotracheal intubation
 - favor non-invasive ventilation and active respiratory physiotherapy
 - Optimize surgical procedures to avoid biliary leaks and need for reoperations

Transplantation of organs from donors infected or colonized by MDR Gram-negative bacteria

- In most countries
 - Patients bacteremic with carbapenem-resistant bacteria are excluded as donors
 - Kidney and lungs are excluded if urine or BAL cultures are positive for carbapenem-resistant bacteria
 - However such culture results might not be known at the time of donation leading to potential donor-derived infections with carbapenem-resistant bacteria

Outcome of SOT using organs from donors infected or colonized by MDR Gram-negative bacteria

- 2011-2012: 219 organs from 170 donors
 (10 south Italian hospitals)
- 30 organs transplanted from 18 deceased donors infected or colonized by MDR isolates
 - 14 (47%) considered high-risk for transmission (bacteremic/colonization of transplanted organ)
 - 16 (53%) considered low-risk for transmission

Outcome of SOT using organs from donors infected or colonized by MDR Gram-negative bacteria

- The majority of the low-risk recipients didn't receive donor-targeted antibiotherapy
 - No transmission/infection reported

Risk underestimation and miscommunication leading to inappropriate therapy (wrong antibiotic, short duration, delayed initiation) lead to increased morbidity and mortality

therapy developed infection (n=3) / colonization (n=1)

Can we safely use organs from colonized / infected donors?

- Donor colonized by a MDR isolate remaining susceptible to carbapenem can remain candidate for donation
- Donor with deep seated infection of organs not being transplanted
 - Donor should have >48 hours of effective antibiotic therapy
 - Additional consent from recipient/family
 - Recipient should receive at least 14 days of antibiotic therapy
- Donors bacteremic/infected with carbapenemase producing isolates or MDR *Pseudomonas* should be excluded/considered with extreme caution as donors

Conclusions

- Gram negative bacteria predominate as cause of pneumonia, urinary tract infections and bacteremia in the first 12 months post-transplantation
- Increase of MDR isolates especially among the ESKAPE group associated with potential disastrous clinical outcome
- Recipient screening for MDR pathogens and pre-emptive treatment might be indicated
- Bundled interventions (hospital hygiene, reduction of antibiotic therapy...) to prevent bacterial infections might be beneficial
- Donor-derived infections with MDR gram negative pathogens is a serious concern and requires careful evaluation of both potential donor and recipients colonized and/or infected by such pathogens