

Diagnosis of viral infections: state of the art and

perspectives *M.R.Capobianchi*

INMI L. Spallanzani, Rome, Italy

Thanks to:

Isabella Abbate Chiara Agrati

Fausto Baldanti

Tiziana Lazzarotto

AMCLI Working group on Infections in Transplant GLaIT (since 2008)

Outline

- CMV laboratory monitoring
 - Historical excursus of methods
 - DNAemia
 - Need for standardization
 - Sampling issues
 - Immunological monitoring
 - Diagnostic innovation

The laboratory-transplant connection

Prophylaxis

- Rationale: antiviral therapy for a predefined time to all patients at risk for CMV
- Laboratory implication: monitoring not so crucial; driven by symptoms occurrence (clinical surveillance) and called after completion of prophylaxis

Pre-emptive

- Rationale: detection of low-level asymptomatic CMV in blood precedes the onset of CMV syndrome and tissue-invasive disease.
- Laboratory implication: Regular monitoring of CMV in blood and Tx only when the virus is detected at threshold evels

The laboratory-transplant connection

Prophylaxis

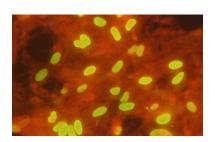
- Rationale: antiviral therapy for a predefined time to all patients at risk for CMV
- Laboratory implication: monitoring not so crucial; driven by symptoms occurrence (clinical surveillance) and called after completion of prophylaxis

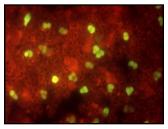
Pre-emptive

- Rationale: detection of low-level asymptomatic CMV in blood precedes the onset of CMV syndrome and tissue-invasive disease.
- Laboratory implication: Regular monitoring of CMV in blood and Tx only when the virus is detected at threshold evels

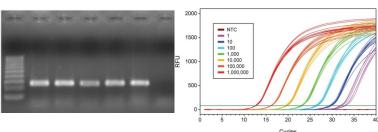
The success of preemptive therapy is dependent upon appropriate diagnostic testing

Technological evolution for for CMV monitoring developed since the 80s:

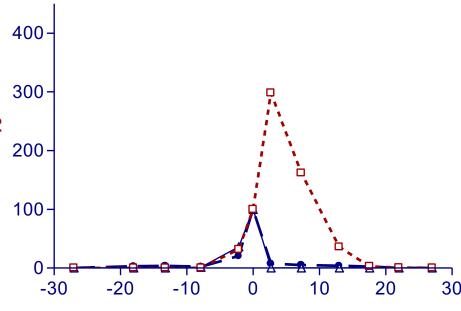




•Virus isolation (standard isolation with virus recovery or rapid isolation by shell-vial)



 Detection of pp65 in peripheral blood leukocytes (pp65-antigenemia)



 Detection and quantification of viral DNA in different blood compartments (DNAemia)

 Sequencing (classical and NGS) for detection/quantification of resistance mutations

Rising levels of antigenemia during GCV treatment

- pp65 is passively transferred from infected endothelial cells to leukocytes
- •A paradoxical increase in antigenemia levels during treatment in D+/R- is consistently observed.
- This increase is not expression of treatment failure
 - G. Gerna et al, Transplantation 2003

ARM	Incidence of infection	Incidence of number patients requiring antiviral treatment
99 DNAemia	81/99 81.8%	23/99
101 antigenemia	87/99 86.1%	42/101 41%
	p= ns	p= 0.01

Patients monitored with DNAemia require less Tx, without detriment for successfulmanagement Gerna et al. Antivir Ther 2007

Table 2. Body fluid specimens that may be used for cytomegalovirus nucleic acid testing

Specimen type	Clinical utility	Advantages	Disadvantages
Serum	Guide preemptive therapy	Indicates active viral replication	Requiring pretest processing (simple)
	Diagnosis of disease	Highly specific	
	Treatment monitoring		
Plasma	Guide preemptive therapy	Indicates active viral replication	Requiring pretest processing (simple)
	Diagnosis of disease	Highly specific	
	Treatment monitoring		
Whole blood	Guide preemptive therapy	Does not require pretest processing	May detect latent virus (low copy numbers)
	Diagnosis of disease	Detects lower level of viral replication, may allow for earlier antiviral therapy (higher sensitivity than plasma/serum)	Low specificity (at low-level viremia)
	Treatment monitoring		
Leukocyte preparation	Guide preemptive therapy	Higher sensitivity than plasma/serum	May detect latent virus
	Diagnosis of disease		Requires pretesting processing
	Treatment monitoring		
Bronchoalveolar fluid	Diagnosis of CMV pneumonia	Higher viral load may correlate with active disease	May indicate viral shedding
			Sample obtained via invasive procedure
Cerebrospinal fluid	Diagnosis of central nervous system CMV disease	High sensitivity and specificity in samples with low leukocyte count	May detect latent virus in samples contaminated with high numbers of leukocytes
	Surrogate marker of treatment response	Higher viral loads may indicate more severe disease	Sample obtained via invasive procedure
Aqueous or vitreal humour	Diagnosis of CMV retinitis (although characteristic funduscopic findings are sufficient for diagnosis)	High sensitivity and specificity	Sample obtained via invasive procedure
Urine	Diagnosis of primary CMV nephritis (not routinely recommended)	Diagnostic in CMV seronegative kidney recipients	Not useful in seropositive patients (up to 50% viral shedding in posttransplant period without clinical significance)

Clinical utility of cytomegalovirus viral load in solid organ transplant recipients

Curr Opin Infect Dis 2015

Maria V. Dioverti and Raymund R. Razonable

Table	1. Summary of the clinical utility of quantitative cytomegalovirus nucleic acid tests
Clinical utility	
	Rapid diagnosis
	Rapid turn-around time
	High sensitivity and specificity
	Allows early initiation of antiviral therapy
	Preemptive therapy
	Routine monitoring to guide the initiation of antiviral drugs for preemptive treatment of subclinical CMV infection
	Prognosis
	Higher viral loads correlates with symptomatic and more severe disease
	Treatment response
	Viral load decline correlates with clinical response to antiviral therapy
	Disease recurrence
	Failure to achieve an undetectable viral load, and suboptimal or slow decline in viral load correlates with a higher risk for disease relapse
	Resistance
	Lack of viral clearance or an increase in viral load during antiviral therapy should raise concerns for drug-resistant CMV disease

Clinical utility of cytomegalovirus viral load in solid organ transplant recipients

Curr Opin Infect Dis 2015

Iaria V. Dioverti and Raymund R. Razonable	1ai	ria	V.	Dioverti	and	Ra	ymund	R.	Razonable
--	-----	-----	----	----------	-----	----	-------	----	-----------

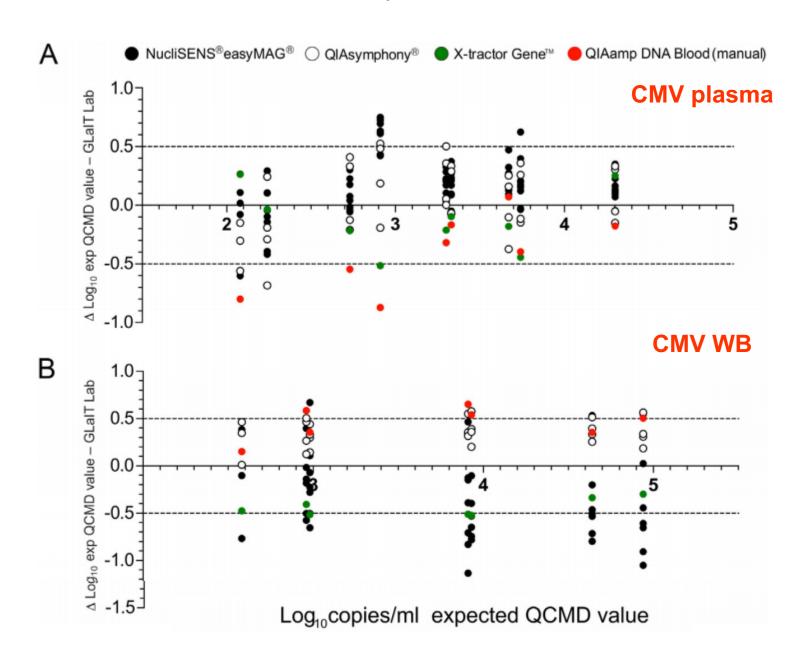
Because several platforms were available for CMV QNAT, there was a wide **inter-assay variability** in the viral load reporting, and this limited the generation of widely applicable viral load thresholds that can be used for various clinical applications.

Contents lists available at ScienceDirect

Journal of Clinical Virology

Nation-wide measure of variability in HCMV, EBV and BKV DNA quantification among centers involved in monitoring transplanted patients

Isabella Abbate^{a,1}, Antonio Piralla^{b,1}, Agata Calvario^c, Annapaola Callegaro^d, Cristina Giraldi^e, Giovanna Lunghi^f, William Gennari^g, Giuseppe Sodano^h, Paolo Ravaniniⁱ, Pier Giulio Conaldi^j, Marialinda Vatteroni^k, Aurelia Gaeta^l, Pierpaolo Paba^m, Rossana Cavalloⁿ, Fausto Baldanti^{b,o,*}, Tiziana Lazzarotto^p, and the AMCLI — Infections in Transplant Working Group GLaIT²


"QCMD 2007 Human CMV DNA EQA Programme"

Methods for viral DNA extraction and quantification

Center #	Nucleic acid extraction	Nucleic acid extraction		Output volume (µl)	Amplification method	Real-time PCR instrument
	Instrument	Protocol				
1	QIA Symphony	DSP virus/pathogen (modified)	400 (200 for WB)	90 (90 for WB)	CMV Trender Affigene	Stratagene xp3000
2	NucliSENS EasyMag	generic 2.0.1	250 (100 for WB)	25 (25 for WB)	CMV Alert Real-Time, ELITechGroup	ABI Prism 7300
3	QIA Symphony	DSP virus/pathogen (modified)	1000	110	CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7300
4	NucliSENS EasyMag	generic 2.0.1 and specific 2.0 for WB	500 (200 for WB)	55 (55 for WB)	in house PCR (target US8)[19]	ABI Prism 7300
5	NucliSENS EasyMag	generic 2.0.1	100	50	CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7300
6	x-tractor gene UV light	Helix DNA Corbet	400 200 for WB	60 150 for WB	CMV Alert Real-Time, ELITechGroup CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7300
7	NucliSENS EasyMag QIA Symphony	generic 2.0.1 blood 200V6 for WB	500 200 for WB	50 200 for WB	CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7500
8	NucliSENS EasyMag	generic 2.0.1	400 (200 for WB)	60 (85 for WB)	CMV Alert Real-Time, ELITechGroup	ABI Prism 7300
9	NucliSENS EasyMag	generic 2.0.1	1000 (200 for WB)	25 (55 for WB	CMV Alert Real-Time, ELITechGroup	ABI Prism 7300
10	QIA Symphony	DSP virus/pathogen and DSP DNA for WB	500 (200 for WB)	90 (90 for WB)	CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7300
11	QIA Symphony	DSP virus/pathogen and DSP DNA for WB	500 (200 for WB)	140 (90 for WB)	CMV ELITE MGB Kit, ELITechGroup	ABI Prism 7300
12	NucliSENS EasyMag	specific 2.0 (modified for WB)	500 (100 for WB)	100 (50 for WB)	CMV ELITe MGB Kit, ELITechGroup	ABI Prism 7300
13	NucliSENS EasyMag	generic 2.0.1	500 (100 for WB)	55 (55 for WB)	CMV Alert Real-Time, ELITechGroup	ABI Prism 7300
14	NucliSENS EasyMag	generic 2.0.1	500 (200 for WB)	55 (55 for WB)	CMV Alert Real-Time, ELITechGroup	ABI Prism 7300
15	Manual extraction	QIAamp blood mini kit	200	100	CMV r-gene Argene-Biomerieux	ABI Prism 7500

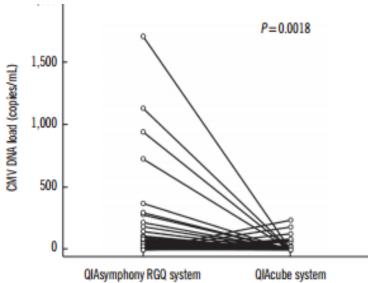
Bland-Altman plots describe the Log difference between the GLaIT laboratory results and QCMD values.

Original Article

Diagnostic Genetics

Ann Lab Med 2017;37:129-136 https://doi.org/10.3343/alm.2017.37.2.129

ISSN 2234-3806 eISSN 2234-3814



Automated Nucleic Acid Extraction Systems for Detecting Cytomegalovirus and Epstein-Barr Virus Using Real-Time PCR: A Comparison Study Between the QIAsymphony RGQ and QIAcube Systems

Hanah Kim, M.D.¹, Mina Hur, M.D.¹, Ji Young Kim, M.T.¹, Hee-Won Moon, M.D.¹, Yeo-Min Yun, M.D.¹, and Hyun Chan Cho, M.D.²

Department of Laboratory Medicine¹, Konkuk University School of Medicine, Seoul; Department of Laboratory Medicine², Hallym University College of Medicine, Seoul, Korea

Automated nucleic acid extraction systems have different performances and significantly affect the detection of viral pathogens.

Source of variability is more than extraction

	Target	Source or description	Variation (%)	P value
	CMV	Overall total for target	67.4	
165 Labs e		Commercial detection reagent	47.1	<0.0001
the College American Pathologist 2009 viral lo	s (CAP)	Amplification target gene	9.6	<0.0001
proficiency		Interaction of commercial detection reagent and amplification target gene	7.2	<0.0001
		Method for nucleic extraction	3.4	0.0077

In October 2010, a World Health Organization (WHO) International Reference Standard became available from the National Institute of Biological Standards and Controls (United Kingdom).

The standard was made from a clinical isolate (Merlin) and has a titer of 5x10⁶ IU/ml

All commercial and laboratory developed tests should be recalibrated and show colinearity to the WHO International Standard and results should be reported as IU/mL.

Biologicals 44 (2016) 242-251

Contents lists available at ScienceDirect

Biologicals

journal homepage: www.elsevier.com/locate/biologicals

A collaborative study to establish the 1st WHO International Standard for human cytomegalovirus for nucleic acid amplification technology

Jacqueline F. Fryer a, Alan B. Heath b, Philip D. Minor a, the Collaborative Study Group

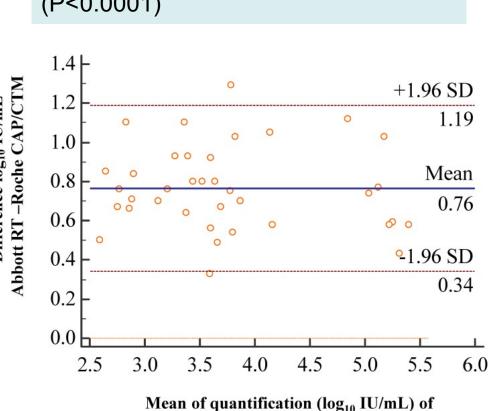
Clinical utility of cytomegalovirus viral load in solid organ transplant recipients

Curr Opin Infect Dis 2015

<i>l</i> aria	V.	Dioverti	and	Ra	ymund	R.	Razonable
---------------	----	----------	-----	----	-------	----	-----------

Because several platforms were available for CMV QNAT, there was a wide **inter-assay variability** in the viral load reporting, and this limited the generation of widely applicable viral load thresholds that can beused for various clinical applications.

With the recent availability of international standard and certified reference materials, there is now opportunity to standardize viral load reporting, with the goal of deriving viral load thresholds for various clinical applications, such as


- rapid diagnosis of CMV infection and disease,
- predicting the risk of disease and assessing the severity of illness
- monitoring efficacy of antiviral therapies
- assessing the risk of viral relapse and drug resistance.

Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

Huey-Pin Tsai^{1,3}, You-Yuan Tsai¹, I-Ting Lin¹, Pin-Hwa Kuo¹, Tsai-Yun Chen², Kung-Chao Chang¹, Jen-Ren Wang^{1,3,4,5}*

CMV VL measured with Abbott real time on average 0.76 log10 IU/mL higher than Roche CAP/CTM assay (P<0.0001)

Abbott RT and Roche CAP/CTM

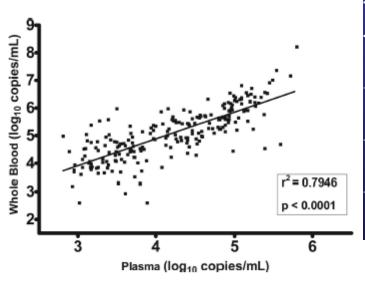
Evaluation of COBAS AmpliPrep/COBAS TaqMan CMV Test for use in hematopoietic stem cell transplant recipients

Poornima Ramanan & Raymund R. Razonable 🔽

Pages 1-7 | Received 06 Feb 2017, Accepted 28 Apr 2017, Accepted author version posted online: 04 May 2017, Published online: 15 May 2017

While the WHO IS has improved the inter-laboratory result variances, there are still important factors that continue to contribute to assay variability. This lack of harmony among NAT highlights the need for further standardization.

The Clinical Utility of Whole Blood Versus Plasma Cytomegalovirus Viral Load Assays for Monitoring Therapeutic Response Transplantation 2011


Luiz F. Lisboa, ¹ Anders Åsberg, ² Deepali Kumar, ¹ Xiaoli Pang, ³ Anders Hartmann, ⁴ Jutta K. Preiksaitis, ¹ Mark D. Pescovitz, ⁵ Halvor Rollag, ⁶ Alan G. Jardine, ⁷ and Atul Humar^{1,8}

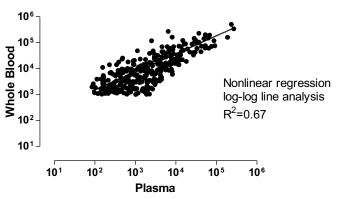
The results of a plasma-based PCR assay were compared with a real-time PCR assay of whole blood and assessed for their ability to predict recurrence.

Good correlation but significant difference in absolute value and clearance kinetics.

Positive predictive value of persistent viremia at day 21 for virologic recurrence was 41.9% plasma and 36.3% WB

Enhanced detection of residual viremia using WB does not seem to offer significant clinical advantages nor allows for better prediction of recurrence of CMV viremia

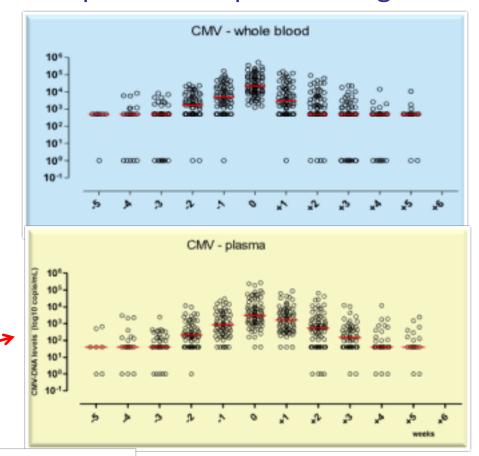
Characteristics	Whole blood	Plasma	р
Day 0 VL	118,950 (400-160,000,000)	17,950 (645-635,000)	P<0.001
Log-change in VL (d0-3)	-1.19 (-4.08 to +0.86)	-0.28 (-1.29 to +0.56)	P<0.001
Log-change in VL (d0-7)	-1.30 (-4.28 to +0.19)	.0.37 (-1.88 to +0.49)	P<0.001
Undetectable by end of treatment (d21)	65/219 (29.7%)	114/219 (52.1%)	P<0.001

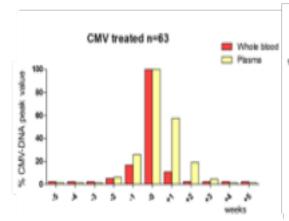

FIGURE 1. Day 0 viral loads in whole blood versus plasma. All viral loads are in log₁₀ copies/mL.

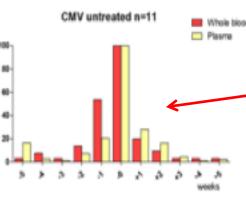
Kinetics of CMV-DNA load in WB and plasma samples of allogeneic

HSCT recipients (1138 samples)

620 samples with quantified CMV-DNA

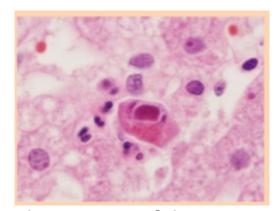

Good correlation plasma vs WB



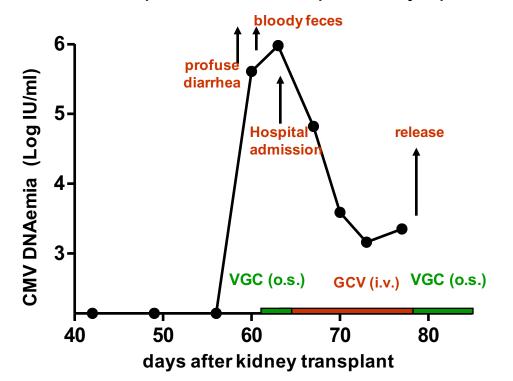

Spearman correlation coefficient r=0.73

Increase and decrease of CMV-DNA level were very similar

Before peak CMV DNA levels in plasma were lower of about 1 Log than WB



In patients receiving pre-emptive therapy, CMV DNA levels in plasma showed a slower decline after peak value



Tissue-invasive CMV disease

The gold standard for definite diagnosis of tissue-invasive CMV disease requires a tissue biopsy and histological demonstration of viral cytopathic effects, or the detection of virus genome/antigens by in-situ hybridization and immunohistochemistry staining.

Obtaining tissue biopsy is not always possible due to the invasive nature of the procedure, and the probable diagnosis of tissue-invasive CMV disease sometimes relies on the exclusion of other potential causes, together with the detection of viremia in a patient with compatible symptoms

For example, a patient with diarrhoea and CMV viremia will have a probable diagnosis of tissue-invasive gastrointestinal CMV disease, as long as there is no other potential cause of the diarrhoea.

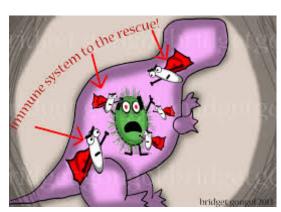
BeaM E. Curr Infect Dis Rep 2014

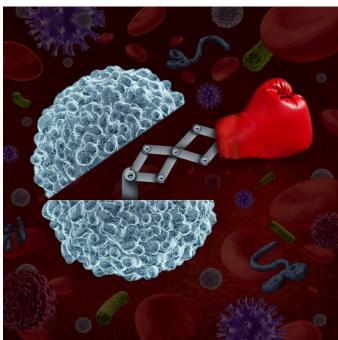
(Transplantation 2013;96: 00-00)

Updated International Consensus Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation

Camille N. Kotton,^{1,8} Deepali Kumar,² Angela M. Caliendo,³ Anders Åsberg,⁴ Sunwen Chou,⁵ Lara Danziger-Isakov,⁶ and Atul Humar,⁷ on behalf of The Transplantation Society International CMV Consensus Group

- ➤ QNAT is preferred for diagnosis, decisions regarding preemptive therapy, and monitoring response to therapy due to the ability to harmonize and standardize these tests (strong, moderate).
- ➤ Either plasma or whole blood is an acceptable specimen for QNAT, with an appreciation of the differences in viral load values and viral kinetics. Specimen type should not be changed when monitoring patients (strong, moderate)
- Commercial and laboratory-developed tests must be calibrated and show colinearity to the WHO international standard; results should be reported as IU/mL (strong, moderate)
- ➤ Until harmonization of viral load tests is achieved, it is not possible to establish universal quantitative levels for trigger points of therapy or treatment endpoints
- ➤ Histology/immunohistochemistry is the preferred method for diagnosis of tissue-invasive disease
- Culture and QNAT of tissue specimens have a limited role in the diagnosis of invasive disease but may be helpful in gastrointestinal disease, where blood QNAT may not be positive. Positive culture of BAL samples may not always correlate with disease (strong, moderate).


Functional impairment of cell-mediated immunity (CMI) in the course of immunosuppression, such as in solid-organ transplant recipients, is a major cause of uncontrolled CMV replication and related clinical complications


Sund F et al. Clin Transplant. 2010

Fernández-Ruiz M, et al. Clin Transl Immunol. 2014.

Kotton CN. Nat Rev Nephrol. 2010

Lisboa LF et al. Transplantation. 2012

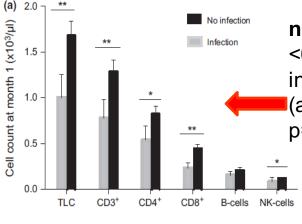
Monitoring competence of T-cell immunity

- Total lymphocyte counts
- CD4⁺ and CD8⁺ T cell counts
- CD4 response to PHA (Cylex)
- Tetramer Ag-staining
- Intracellular IFN-γ (flow cytometry, Ag-specific cellular subsets)
- Quantiferon (antigen-specific CD8⁺ T-cell response)
- Elispot (antigen-specific CD4⁺ and CD8⁺ T-cell response)
- Cultured-ELISPOT (central memory antigen-specific CD4 + and CD8 + T-cell response)

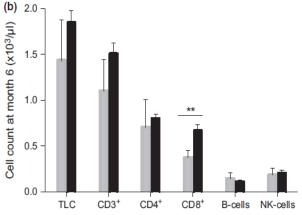
Non specific

- phenotypic and
- functional parameters

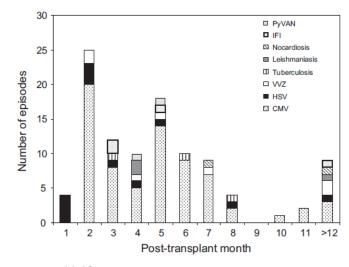
CMV-specific

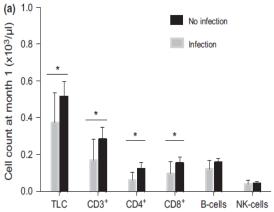

- phenotypic and
- functional parameters

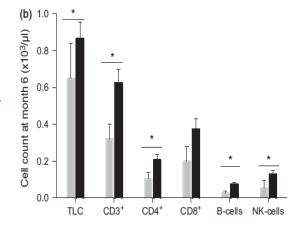
Transplant International 2014


Kinetics of peripheral blood lymphocyte subpopulations predicts the occurrence of opportunistic infection after kidney transplantation

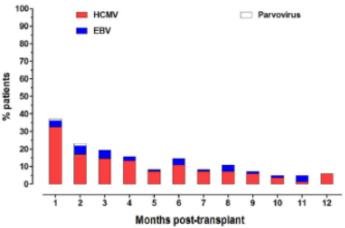
Mario Fernández-Ruiz, ¹ Francisco López-Medrano, ¹ Luis M. Allende, ² Amado Andrés, ³ Ana García-Reyne, ¹ Carlos Lumbreras, ¹ Rafael San-Juan, ¹ José M. Morales, ³ Estela Paz-Artal ² and José M. Aguado ¹

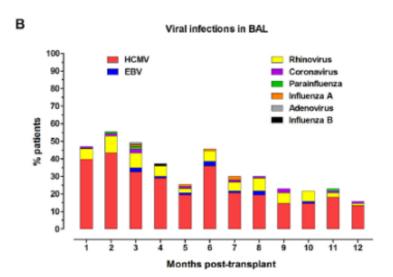

Patients not receiving (164) or receiving (140) antithymocyte globulin (ATG) as induction therapy

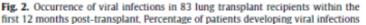


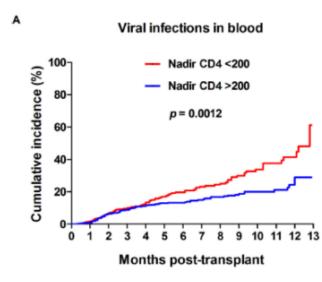

non-ATG: CD8+ T-cell count <0.100 x10³ cells/ul independent risk factor for Ol (adjusted hazard ratio: 3.55; p=0.002)

ATG: CD4+ T-cell count at month 1 <0.050 x10³ cells/ul NPV 0.92 for subsequent OI (overall and CMV)






T-lymphocyte subsets in lung transplant recipients: association between nadir CD4 T-cell count and viral infections after transplantation


Sandra A. Calarota^a, Antonella Chiesa^a, Annalisa De Silvestri^b, Monica Morosini^c, Tiberio Oggionni^c, Piero Marone^a, Federica Meloni^{c,d}, Fausto Baldanti^{a,e,*}

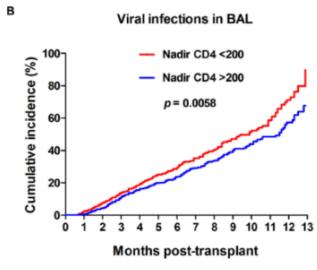


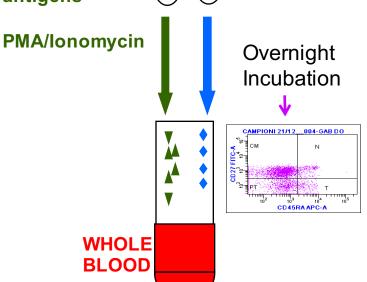
Fig. 3. Cumulative incidence of viral infections in 83 lung transplant recipients in the first 12–13 months post-transplant stratified by nadir CD4 T-cell count (<200</p>

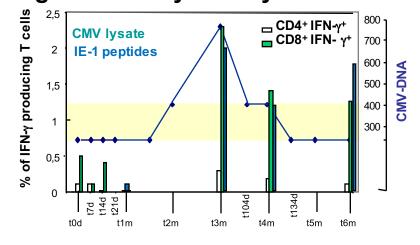
Detection of antigen specific IFN-gamma producing CD4 and CD8 T cells by IFN_{γ} intracellular staining and flow cytometry

Controls

PMA/Ionomycin Medium

Viral antigens


- •CMV AD169 (whole cell lysate, IE-1 peptide pool)
- •BKV AS (LT+VP1 peptide pool)


Stimulation

Virus specific antigens

Brefeldin A

Frequency (median) of CMV-specific IFN γ + T cells

		Therapy needed	Spontaneous control	Р
CMV lysate	CD4	0.15	0.10	
	CD8	0.35	0.20	
IE1-1 pool	CD4	0.00	0.01	0.038
	CD8	0.09	0.32	0.023

Virologic and Immunologic Monitoring of Cytomegalovirus to Guide Preemptive Therapy in Solid-Organ Transplantation

G. Gerna^{a,*}, D. Lilleri^a, A. Chiesa^b, P. Zelini^b, M. Furione^b, G. Comolli^{b,c}, C. Pellegrini^d, E. Sarchi^a, C. Migotto^f, M. Regazzi Bonora^g, F. Meloni^b and E. Arbustini^a

Immunologic monitoring
CMV-specific CD4+ and CD8+
T cells by cytokine flow
cytometry, using CMV-infected
dendritic cells as stimulus

'protective' immunity: ≥0.4 CD4+ and CD8+ CMVspecific T cells/uL blood

patients reconstituting
HCMV-specific CD4+ and CD8+
T-cell immunity at 60 days
posttransplant onward were
able to control HCMV infection

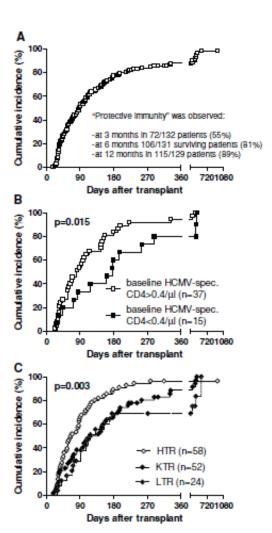


Figure 2: Reconstitution of both HCMV-specific CD4+ and CD8+ T-cell immunity (>0.4 cells/µL blood for both subpopulations [11]). (A) The number of patients reconstituting protective levels of T-cell immunity rose from 72/132 (55%) after 3 months to 115/129 (89%) after 12 months follow-up. (B) Reconstitution according to baseline specific CD4+ levels. (C) Reconstitution according to heart (HTR), kidney (KTR) or lung (LTR) transplantation.

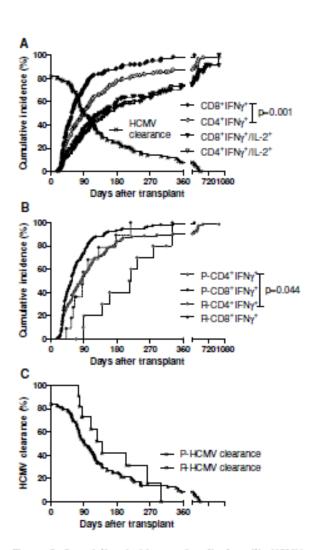
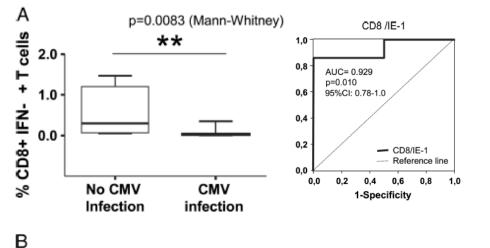
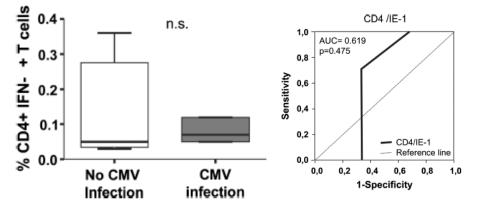
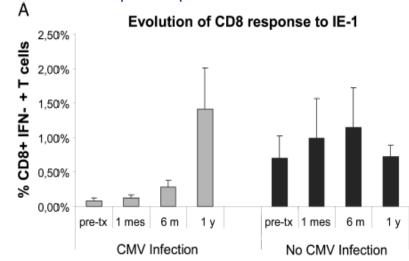




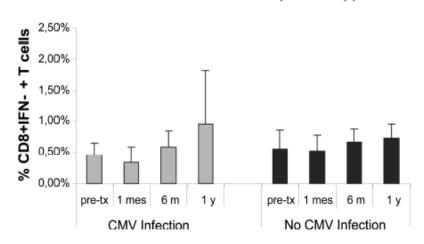
Figure 3: Cumulative incidence of patients with HCMV-specific CD4+ and CD8+ T cells and HCMV clearance from blood. (A) CD8+ T cells preceded CD4+ T cells [median time 57 vs. 87 days, p = 0.001, log-rank test). IFN-γ+/IL2+CD8+ and CD4+ T-cell appearance was delayed (median time 132 and 155 days, respectively). Virus clearance from blood significantly correlated (p < 0.005) with time to detection of HCMV-specific IFN-γ+ CD4+ T-cells and detection of HCMV-specific IFN-γ+/CD8+ T-cells. (B) Cumulative Incidence of HCMV-specific CD4+ and CD8+ T-cell appearance in patients with primary (P) or reactivated (R) HCMV infection. (C) HCMV clearance in transplanted patients with primary (P) or reactivated (R) HCMV infection.

- •15 CMV IgG+ Kidney recipients (FU:1-year)
- Pre-transplant:
 - √ ~50% negative cellular response to IE-1
 - √ absence of IE-1-responsive T CD8 in pts who developed CMV infection
 - ✓ median CD8 T-cell responses to IE-1 higher
 in pts who did not develop CMV infection



Pretransplant CD8 T-Cell Response to IE-1 Discriminates Seropositive Kidney Recipients at Risk of Developing CMV Infection Posttransplant

Maria Ovidia López-Oliva, ¹ Virginia Martinez, ² Águeda Buitrago, ² Carlos Jiménez, ¹ Begoña Rivas, ¹ Fornando Escuin ¹ María Iosé Santana ¹ Pafael Selacs ^{1,2} and Toroca Rollón^{2,3}


Transplantation • Volume 97, Number 8, April, 2014

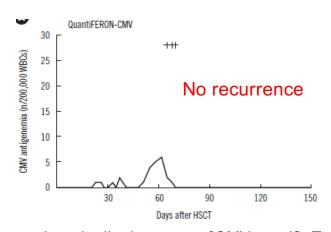
Pts who developed CMV infection did not develop IE1-specific CD8 after 6 m

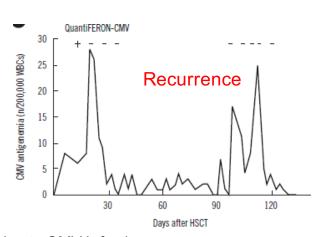
Evolution of the CD8 response to pp65

В

CMV-specific T-cell immunity test using QF-CMV to predict recurrent CMV infections in pediatric allo-HSCT recipients within the first year post-transplantation.

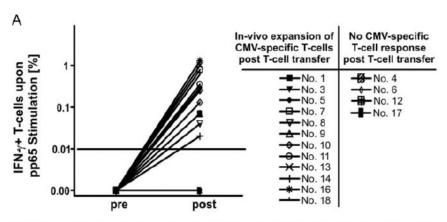
 Patients with positive QF-CMV results following initial CMV infection had no recurrent infections thereafter

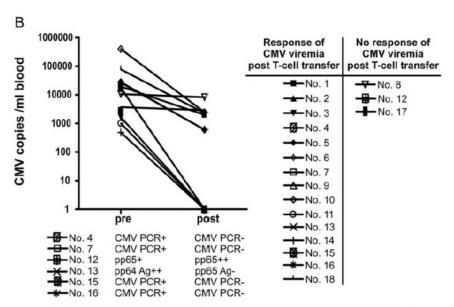

Table 2. Occurrence of recurrent CMV infection in patients with positive, negative, and indeterminate QuantiFERON-CMV results measured at the end of the first CMV infection post allogeneic HSCT


	QuantiFERON-CMV at the end of the first CMV infection				
	Positive (N = 4)	Negative (N = 8)	Indeterminate (N=3)	Г	
Presence of recurrent CMV infection (N of patients)	0 (0.0%)	5 (62.5%)	3 (100.0%)	0.019	
Absence of recurrent CMV infection (N of patients)	4 (100.0%)	3 (37.5%)	0 (0.0%)		

Data are expressed as number (percentage).

Abbreviations: CMV, cytomegalovirus; HSCT, hematopoietic stem cell transplantation.


• Establishment of CMV-specific T-cell immunity following initial CMV infection contributes to the prevention of recurrent CMV infection episodes



Longitudinal patterns of CMV-specific T-cell immunity in relation to CMV infection

In vivo T-cell response and virologic response after adoptive transfer of pp65-specific T cells in allo-SCT

CMV-specific T-cell response day 0 and day 7-28 post adoptive transfer

CMV-Viremia at day 0 and day 7-28 post adoptive T-cell transfer

The infusion of low numbers of CMV-specific T cells is safe, feasible, and effective as a treatment on demand for refractory CMV infection and CMV disease after allo-SCT.

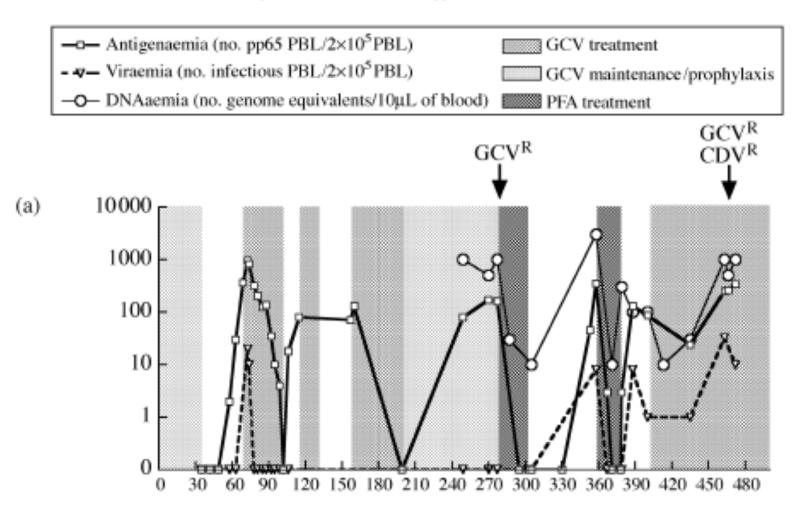
- In the transplant setting, emergence of resistance mutations concerns 0.45–2.2% of recipients (i.e. 2.2–15% of patients developing CMV infection) depending on therapeutic strategies, studies definition and analysis criteria (Lurain NS et al., Clin.Microbiol. Rev. 2010; Hantz S et al, J.Antimicrob. Chemother. 2010).
- Complex virus population dynamics have been reported in immunocompromised patients during drug selective pressure (Baldanti F et al., Transplantation. 1998; Baldanti F et al., Clin Infect Dis. 2002; Baldanti F et al., J Antimicrob Chemother. 2004; Campanini G, J Clin Virol. 2012; Chou S et al., Antimicrob Agents Chemother. 2014)
- The majority of HCMV drug-resistant strains show mutations in the UL97 gene which impair GCV and VGCV intracellular phosphorylation
- Double mutants may also develop

SOT, Spain (Sept 2013-Aug 2015) 9 out of 39 (23%) patients tested showed a CMV resistance mutation

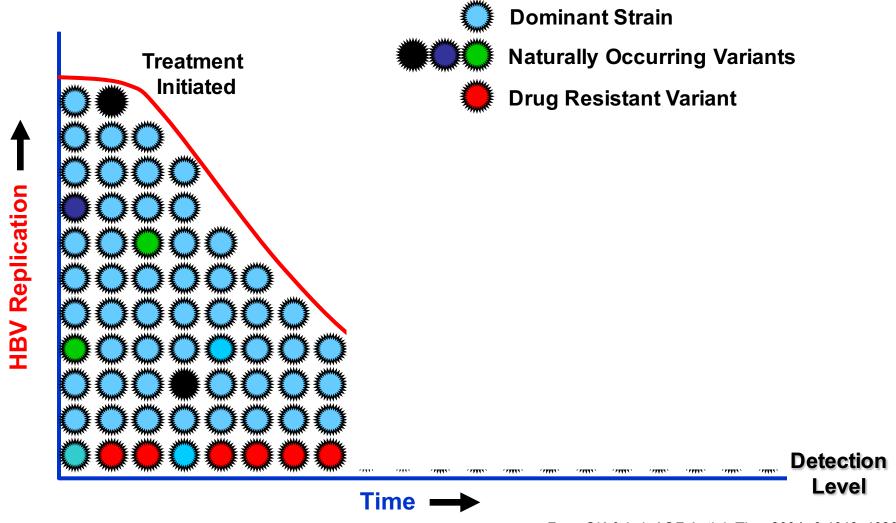
Resistance mutations in the UL97 and UL54 genes.

Patient	Mutation detected UL97	Ratio ^a GCV	Mutation detected UL54	Ratio ^a GCV/POS/CDV
10	A594V	8.3		
19	M460V	8.3		
29	L595S	9.2		
30	C592G	2.9		
34	H520Q	10		
35	M460V	8.3	P522A	3/1/4.1
36	L595S	9.2		
38	M460V	8.3		
42	M460I	5	D413A	6.5/0.8/11

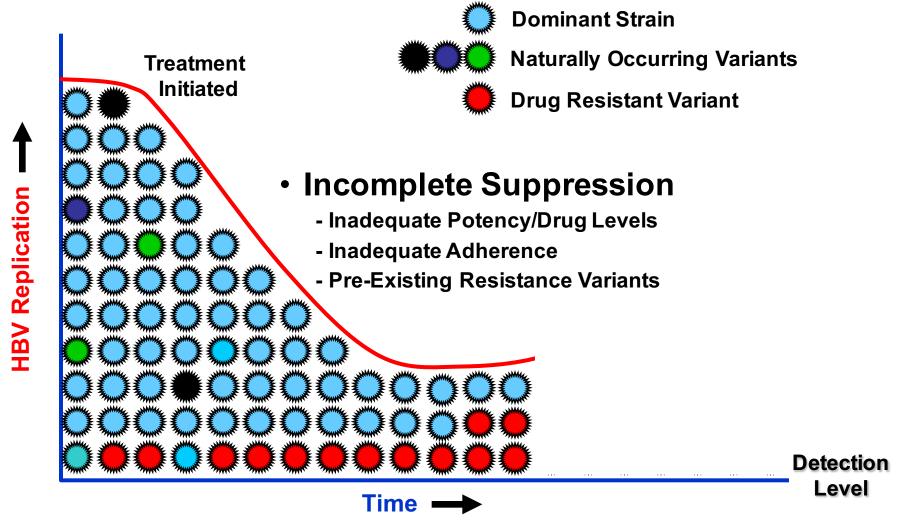
^a IC₅₀ of mutant/IC₅₀ of wild type.

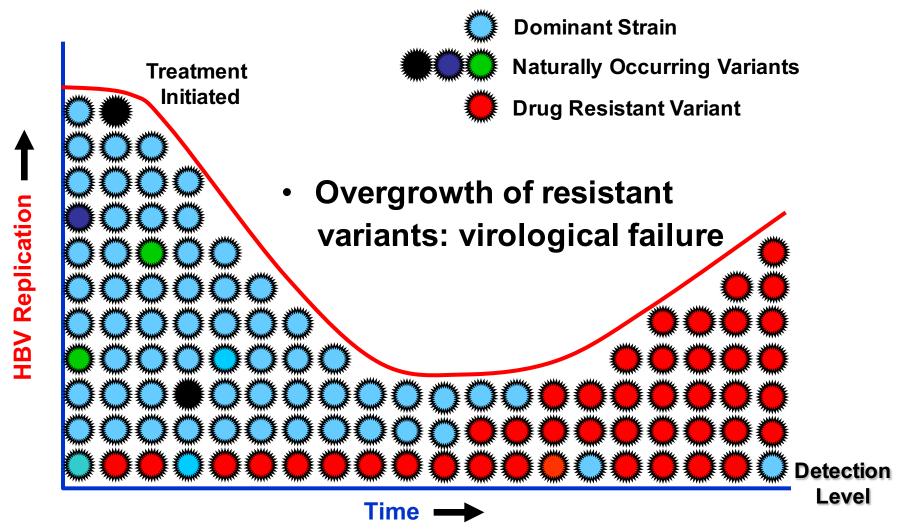

Mutations associated with:

- Lung transplantation,
- Prophylaxis ≥6 months
- † time between transplantation and suspicion of resistance
- Longer previous treatment with GCV or VGCV


Human cytomegalovirus double resistance in a donor-positive/ recipient-negative lung transplant patient with an impaired CD4-mediated specific immune response

Fausto Baldanti^{1,2}, Daniele Lilleri¹, Giulia Campanini¹, Giuditta Comolli^{1,2}, Anna Lisa Ridolfo³, Stefano Rusconi³ and Giuseppe Gerna¹*


Journal of Antimicrobial Chemotherapy (2004) 53, 536-539


Incomplete suppression of virus replication leads to selection of mutants

Incomplete suppression of virus replication leads to selection of mutants

Incomplete suppression of virus replication leads to selection of mutants

Published in final edited form as:

J Clin Virol. 2014 September;

Deep Sequencing: Becoming a Critical Tool in Clinical Virology

The diagnosis of infectious diseases by Magnet 4. Tole genome next generation sequencing: a new era is opening

'arc Lecuit 123.4 and Marc Eloit 5.6*

journal homepage: www.elsevier.com/locate/jcv

Review

Next-generation sequencing technologies in diagnostic virology

Luisa Barzon*, Enrico Lavezzo, Giulia Costanzi, Elisa Franchin, Stefano Toppo, Giorgio Palù

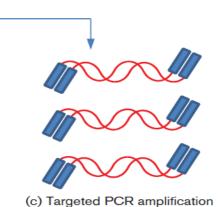
Application of 'next-generation sequencing technologies to microbial Daniel MacLean, Jonathan D. G. Jones and David J. St genetics

OPEN & ACCESS Freely available online

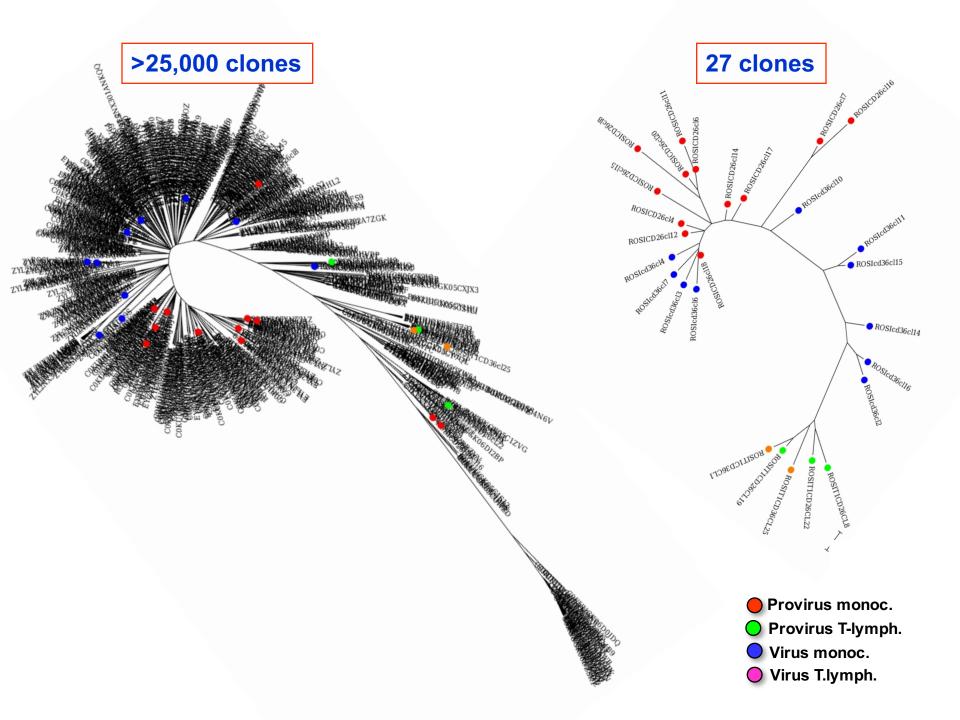
PLOS GENETICS

The Next Generation Becomes the Now Generation

Diego A. Martinez*, Mary Anne Nelson

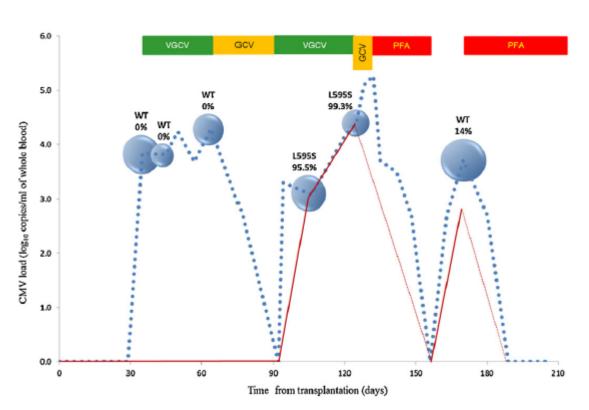

Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America

Amplicon principle:


(a) Template DNA

- Generate sequence-targeted amplicons (lenght depending on system)
- Sequence all the amplicons

(b) Random shearing, size selection and adapter ligation



Contribution of next generation sequencing to early detection of cytomegalovirus *UL97* emerging mutants and viral subpopulations analysis in kidney transplant recipients

Journal of Clinical Virology 80 (2016) 74–81

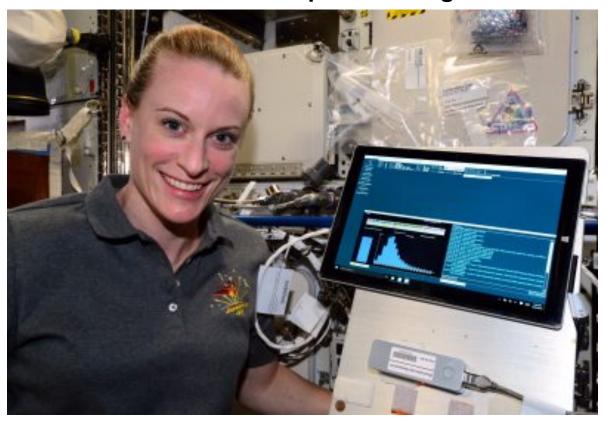
Isabelle Garrigue^{a,b,c,**}, Rémi Moulinas^{d,e,f,g}, Patricia Recordon-Pinson^{b,c}, Marie-Laure Delacour^{e,f}, Marie Essig^h, Hannah Kaminskiⁱ, Jean-Philippe Rerolle^h, Pierre Mervilleⁱ, Hervé Fleury^{a,b,c}, Sophie Alain^{d,e,f,g,*}

Emergence of L595S mutation under GCV was followed up.

After PFA rescue therapy, in two patients,L595S mutant reemerged, but was only detected by NGS technology (14% and 9.6%).

NGS improved sensitivity helps in studying viral abundance, dynamics and diversity, that are difficult with Sanger sequencing.

How far are we from current clinical aplication of NGS?


In the current clinical context, viral resistance is investigated with Sanger sequencing. In case of a negative Sanger result, it could be pertinent to turn to a more sensitive detection with NGS, particularly in fragile patients with high risk of developing antiviral esistance, giving at the same time an image of the viral global variability.

In a routine perspective, there is a need to determine how early the detection of emergent resistant variants should influence therapeutic adaptation. When a new viral replication occurs, this also raises the question of sensitive detection of mutation persistence before a new treatment.

This deserves to be studied on a larger scale.

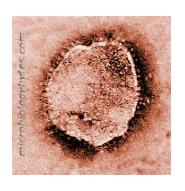
MinION becomes first to sequence DNA in space. 30 August 2016

NASA Astronaut Kate Rubins sequenced DNA in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device / NASA

What is Metagenomics?

Contemporary analysis of all genomes present in a given environment:

- Serching for new species (microbial, viral...)
- Quantitative description of microbial communities (viroma, microbioma)
- Microbial variability
- Diagnostics.....



Human body

Soil samples

Extreme environments

Marine ecosystem

N Engl J Med 2008;358.

A New Arenavirus in a Cluster of Fatal Transplant-Associated Diseases

Gustavo Palacios, Ph.D., Julian Druce, Ph.D., Lei Du, Ph.D., Thomas Tran, Ph.D., Chris Birch, Ph.D., Thomas Briese, Ph.D., Sean Conlan, Ph.D., Phenix-Lan Quan, Ph.D., Jeffrey Hui, B.Sc., John Marshall, Ph.D., Jan Fredrik Simons, Ph.D., Michael Egholm, Ph.D., Christopher D. Paddock, M.D., M.P.H.T.M., Wun-Ju Shieh, M.D., Ph.D., M.P.H., Cynthia S. Goldsmith, M.G.S., Sherif R. Zaki, M.D., Ph.D.,

454 pyrosequencing of the patients' samples provided, amidst a host background of 103,632 total reads, 14 reads corresponding to a novel, deadly arenavirus

CORRESPONDENCE

Volume 358:2638-2639 June 12, 2008 Number 24

A New Arenavirus in Transplantation Allander T, de Lamballerie X, Simmonds P


Although the study correctly shows how ultra-highthroughput sequencing is a powerful tool for microbiology, it appears that the current study is an example of its unnecessary use. Sequence diversity within a species is not the same thing as a "new virus."

Temporal Response of the Human Virome to Immunosuppression and Antiviral Therapy

Cell 155, 1178-1187, November 21, 2013 © 2013

Iwijn De Vlaminck, ¹ Kiran K. Khush, ² Calvin Strehl, ² Bitika Kohli, ² Helen Luikart, ² Norma F. Neff, ¹ Jennifer Okamoto, ¹ Thomas M. Snyder, ¹ David N. Cornfield, ³ Mark R. Nicolls, ³ David Weill, ³ Daniel Bernstein, ⁴ Hannah A. Valantine, ² and Stephen R. Quake^{1,*}

- marked virome composition dynamics at the onset of the therapy
- the bacterial component of the microbiome remains largely unaffected

Take home messages

- Monitoring of viral infections remains mandatory in the post transplant period
- The availability of international standards for quantification of DNA of major opportunistic viruses is a step forward in the identification of cut-off values for preemptive treatment
- Immunologic monitoring is helpful for risk stratification of transplant recipients
- Combining molecular monitoring with immunological monitoring may provide additional information for personalized intervention
- New techniques are rapidly emerging with potential of
 - refining virological monitoring
 - predicting complications
 - tailoring therapeutic intervention
- Still many (trivial?) points need better definition

