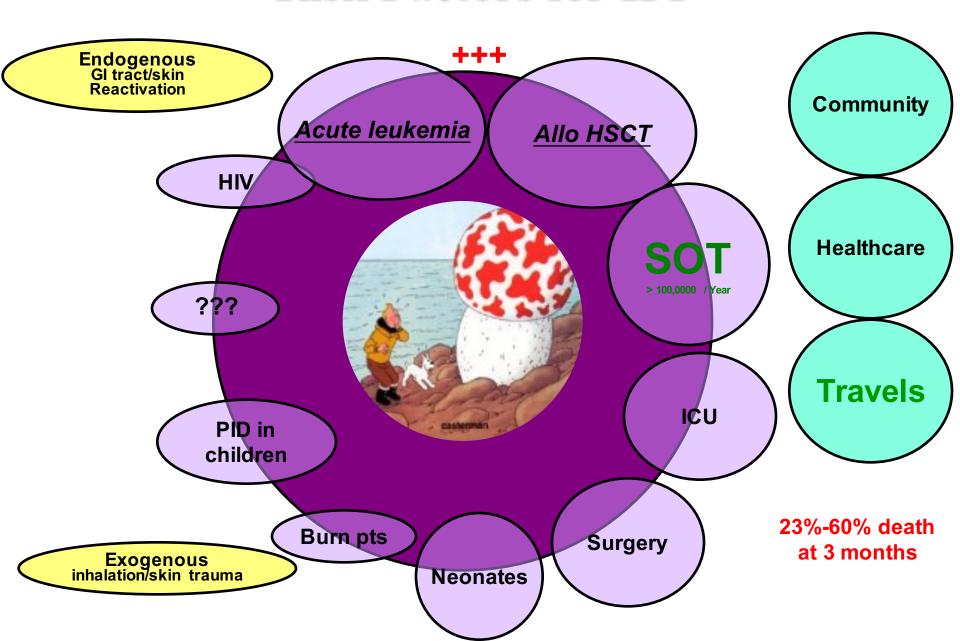

Fungal infections following solid organ transplantation

Olivier Lortholary M.D.; Ph.D

Centre National de Référence Mycoses Invasives & Antifongiques, Unité de Mycologie Moléculaire, CNRS URA3012 Institut Pasteur,

& Centre d'Infectiologie Necker-Pasteur Université Paris Descartes, Hôpital Necker Enfants malades, IHU Imagine Paris, France.

Varese, May 19th, 2017



What will not be covered....!

- Diagnosis of IFI: See Schelenz et al. Lancet ID 2015
- Prophylaxis: See Gavalda et al. CMI 2014
- Pneumocystis jirovecii: See ECIL, J Antimicrob Chemother 2016
- Cutaneous/subcutaneous infections: See Guegan et al. Curr Opin
 Infect Dis 2016
- Organ transmitted IFI: See AST recommendations; Albano et al. CID
 2010; Brugières TID 2010

Risk Factors for IFI

Time dependent infectious risk in SOT

TRANSPLANTATION

NOSOCOMIAL TECHNICAL DONOR OPPORTUNISTIC, RELAPSED, RESIDUAL Activation of Latent Infection

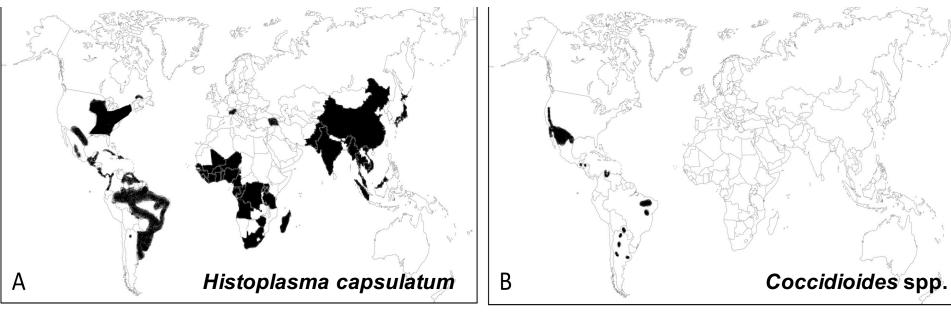
COMMUNITY-ACQUIRED

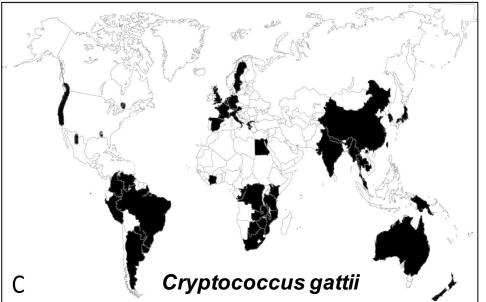
<4 WEEKS

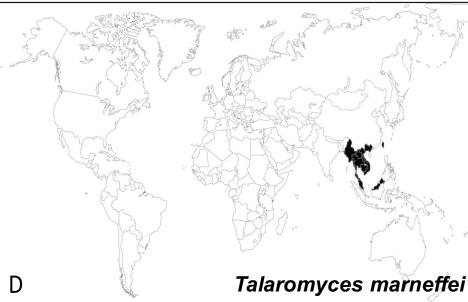
MRSA, *Candida*, VRE, *Aspergillus*, Aspiration, Line Infection, *C. difficile* 1-6 MONTHS

HSV, CMV, HBV, HCV, EBV, Listeria, TB, PCP, BK Virus, Nocardia, Toxoplasma, Strongyloides, Leishmania >6 MONTHS

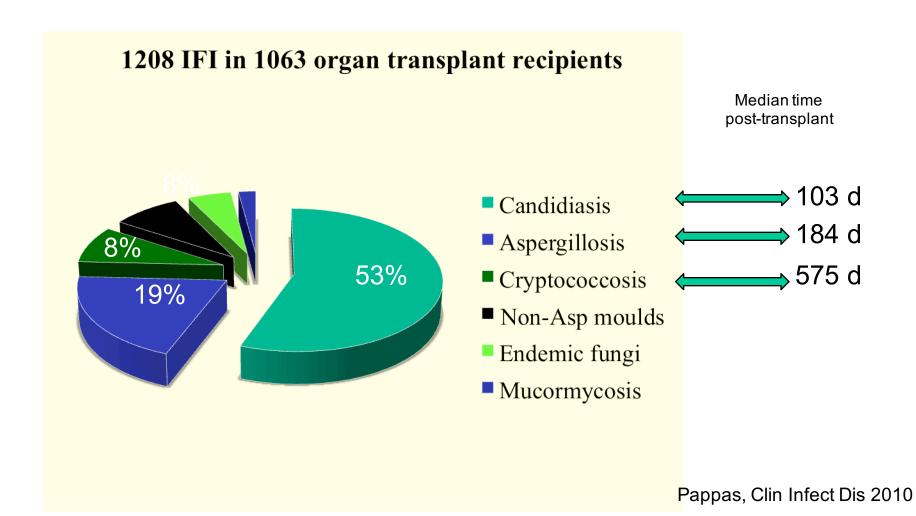
Community-Acquired Pneumonia, Aspergillus, Dermatophytes, CMV Colitis, Urinary Tract Infection


Nosocomial Pathogens, Donor-Derived Infections, Recipient Colonizers Period of Most Intensive Immunosuppression Common to Rare (Depends on the Net State of Immunosuppression)

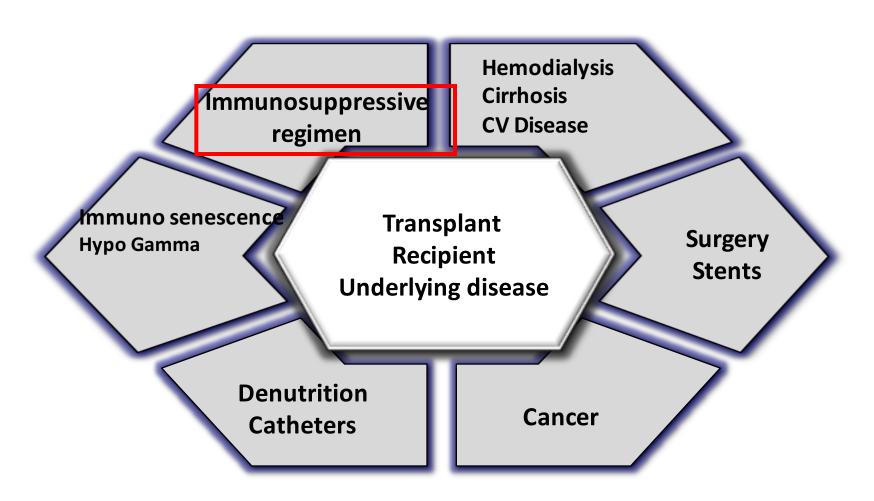

COMMON VARIABLES IN IMMUNOSUPPRESSION


- Antirejection therapy (anti-lymphocyte sera) and new agents for immunosuppression
- 8 Neutropenia and lymphopenia
- **⊗** Immunomodulatory viral infections (CMV, HCV, and EBV)

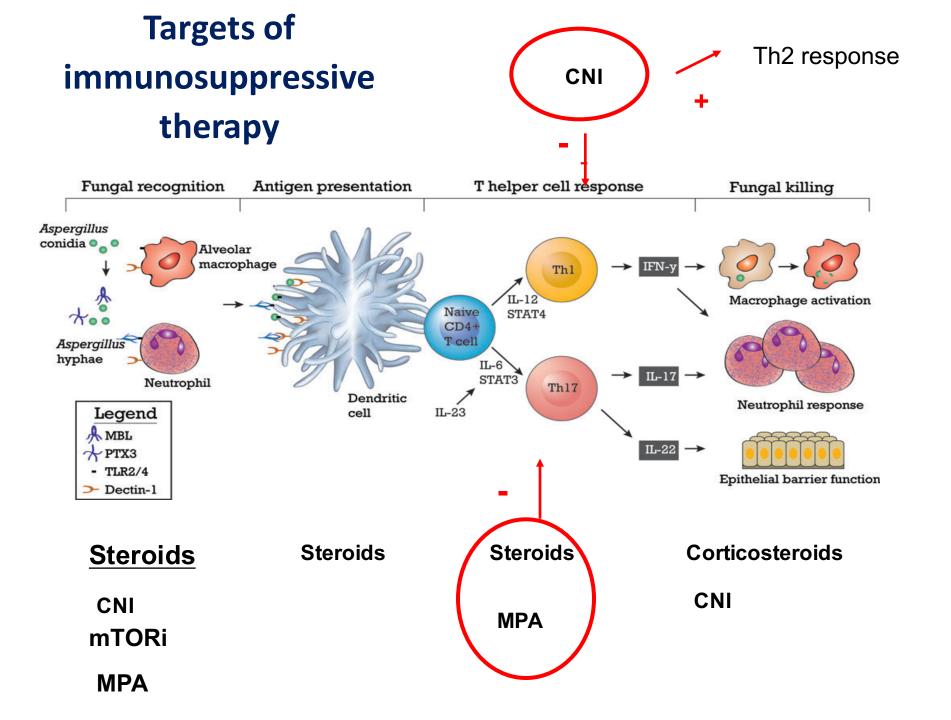
Immunocompromised SOT and worldwide fungal risk

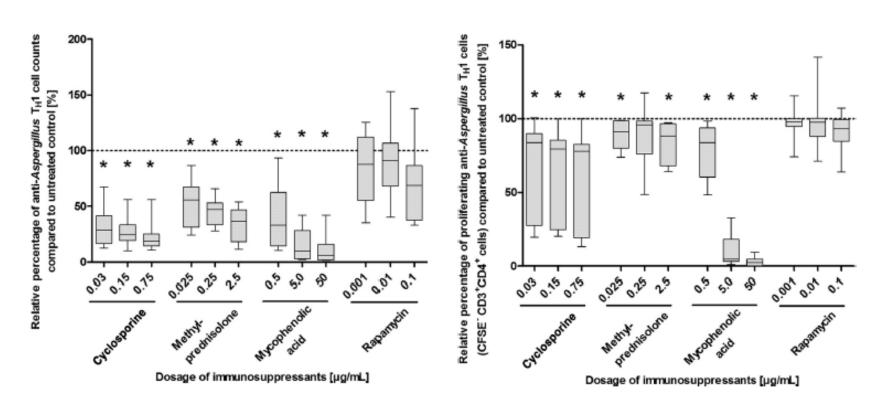

Lortholary O et al. CID 2013

Major IFI diagnosed in SOT recipients TRANSNET data


Invasive fungal diseases by transplant type

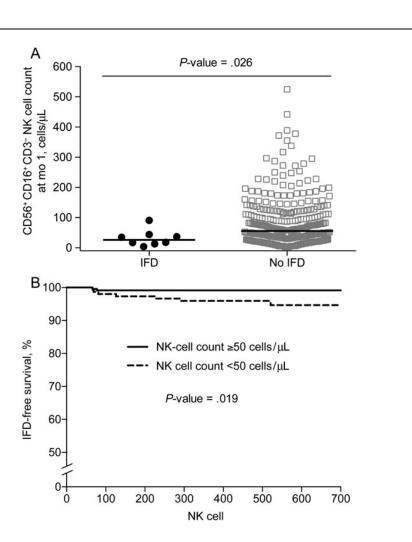
IFI type	Kidney $(n = 332)$	Liver (n = 378)	Pancreas $(n = 128)$	Lung $(n = 248)$	Heart (n = 99)	Small bowel $(n = 22)$
Candidiasis	164 (49)	255 (68)	97 (76)	56 (23)	48 (49)	19 (85)
Aspergillosis	47 (14)	42 (11)	6 (5)	109 (44)	23 (23)	0 (0)
Zygomycosis	8 (2)	9 (2)	0 (0)	8 (3)	3 (3)	0 (0)
Other mold	10 (3.0)	9 (2.4)	4 (3.1)	49 (19.8)	7 (7.1)	0 (0.0)
Unspecified mold	7 (2.1)	8 (2.1)	0 (0.0)	7 (2.8)	2 (2.0)	0 (0.0)
Cryptococcosis	49 (15)	24 (6)	6 (5)	6 (2)	10 (10)	1 (5)
Endemic mycoses	33 (10)	17 (5)	8 (6)	3 (1)	3 (3)	0 (0)
Pneumocystosis	5 (1)	0 (0)	1 (1)	4 (2)	3 (3)	0 (0)
Other yeast	6 (1.8)	9 (2.4)	5 (3.9)	0 (0.0)	0 (0.0)	1 (5)
Unspecified yeast	3 (0.9)	5 (1.3)	1 (0.8)	6 (2.4)	0 (0.0)	1 (5)


Major IFD diagnosed in SOT recipients

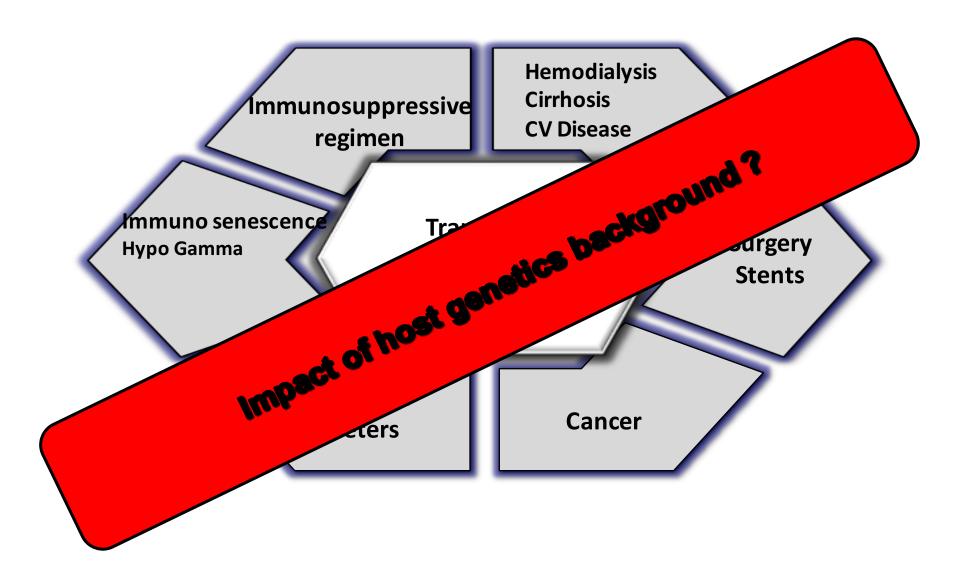

Vulnerability of transplant recipients to IFD

Burden of immunosuppressive therapy?

Decreased anti-Aspergillus Th1 immunity with immunosuppressant



Decreased anti-Aspergillus Th1 cells count and proliferation

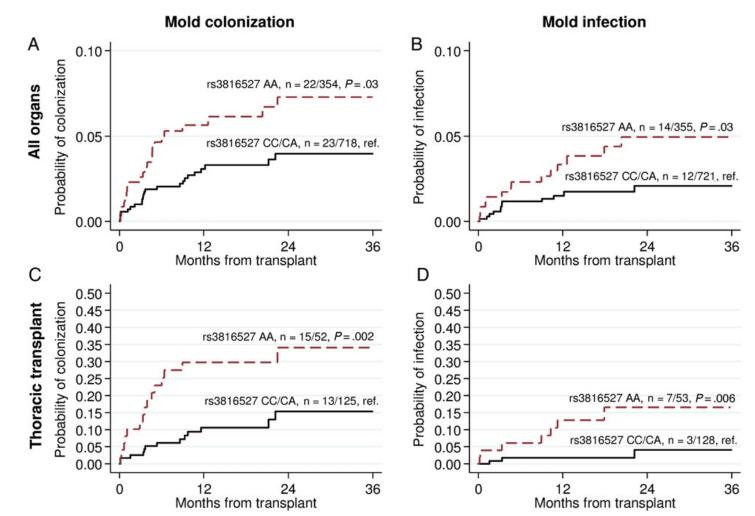

CsA decreases INF-γ release by Th1 cells (not shown)

Decreased post-operative NK cell count predisposes to IFD in SOT

396 SOT 10 IFI, median 79 d

Vulnerability of transplant recipients to IFD

Independent factors associated with mold colonization or infection in SOT


Swiss Cohort: 1101 SOT, 2008-2011

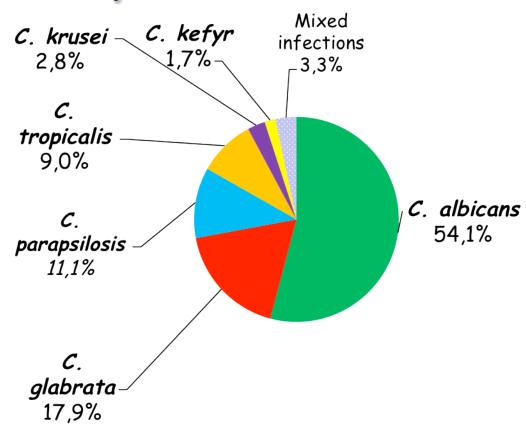
24 SNPs

	Mold Colonizatio	Mold Colonization (n = 42)		IMI (n = 25)	
Variable	HR (95% CI)	P value ^a	HR (95% CI)	P value ^a	
IL1B rs16944 (TT vs CC/CT) ^b	2.52 (1.18–5.36)	.02	4.29 (1.71–10.8)	.002 ^c	
DEFB1 rs1800972 (CC vs GG/GC) ^b	6.11 (2.28–16.4)	.0003 ^d	4.73 (1.46–15.3)	.01	
IL1RN rs419598 (CC vs TT/TC)b	3.35 (1.31–8.58)	.01	2.50 (.75-8.29)	.1	
Lung or heart transplantation	11.5 (5.83–22.6)	<.0001	3.12 (1.21–8.03)	.02	
MMF	0.32 (.16–.63)	.001	0.14 (.06–.33)	<.0001	
Tacrolimus	0.52 (.27–1.03)	.06	0.45 (.19–1.09)	.1	
Corticosteroids			3.03 (.67–13.7)	.1	
Acute/chronic rejection			2.35 (.94-5.83)	.07	
CMV infection/disease	1.83 (.89–3.72)	.1	2.68 (1.11–6.50)	.03	
Recipient age (per year)	1.04 (1.01–1.06)	.008	1.06 (1.02–1.10)	.004	

Pentraxin 3 rs3816527 single nucleotide polymorphism associated with mold colonization or infection in SOT

Swiss Cohort: 1101 SOT, 2008-2011

Risk factors for candidiasis in SOT


Transplant type	Target population
Liver	High-risk liver transplant recipients: Major:
	MELD score >30
	Re-transplantation, fulminant hepatic failure,
	Renal failure requiring replacement therapy, Minor:
	MELD score 20–30, split, living-donor
	>40 transfusion blood products, choledochojejunostomy (Roux-en-Y)
	Renal failure not requiring replacement therapy (CrCl <50 mL/min)
	Èarly re-intervention, multifocal colonization/infection by Candida spp.
Pancreas	Post-perfusion pancreatitis, acute rejection and poor initial allograft function
	Vascular thrombosis, enteric drainage, anastomotic problems, haemodialysis
	Laparotomy after transplantation
Intestinal	Acute rejection and poor initial allograft function, haemodialysis, laparotomy after transplantation,
Heart	anastomotic problems, over-immunosuppression Acute rejection, haemodialysis, re-exploration after transplantation
-	

Cr CL, creatinine clearance; MELD, model for end-stage liver disease; over-immunosuppression (high immunosuppression drug levels, under corticoid bolus).

ESCMID recommendations Gavalda et al. CMI 2014

Characteristics of 2507 patients with candidemia: species involved

Patients' characteristics (N=2507)			
Male gender	60,3%		
Mean age (± sd) years	60 (± 17)		
Intensive care unit	48.1%		
Malignancy	50.3%		
Prior surgery (30 days)	38.7%		
Central venous catheter	74%		

SOT: 10.5% candidemia in ICU

2.7% outside ICU

2571 isolates in 2507 incident episodes (2424 single, 83 mixed infections)

Lortholary et al. ICM sept 2014

Risk of candidemia due to fluconazole nonsusceptible isolates

Candipop study, 29 hospitals, Spain 2010-2011:

617 patients (21.7% FCZ non-susceptible)

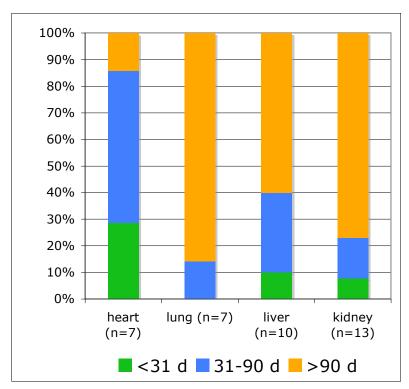
- Independent factors with FCZ-NS:
 - Transplant recipient (AOR 2.13; 95% CI 1.01-4.55)
 - Hospitalization in a unit with high prevalence (≥ 15%) of FCZ-NS strains (7.53; 4.68-12.10)
 - Previous azole therapy (\geq 3d, within 30 d) (2.04; 1.16-3.62)
- Definition and validation of a predictive score

Echinocandin resistant / MDR Candida glabrata isolates (2012-2014)

Does exist in the absence of prior exposure!

% Echinocandin R	% MDR (azoles & echinocandins)	Reference
	1	CDC Sentry, Pfaller JCM 2012
	1	Pham AAC 2014
11 (18% <i>FKS</i> mutants)	-	Beyda CID 2014
6.7 (increase 2001-2010)	3.5	Alexander CID 2013
10.3	6.8	Farmakiotis EID 2014
	2.6	Cleveland PLoS ONE 2015

Risk factors for invasive aspergillosis in SOT

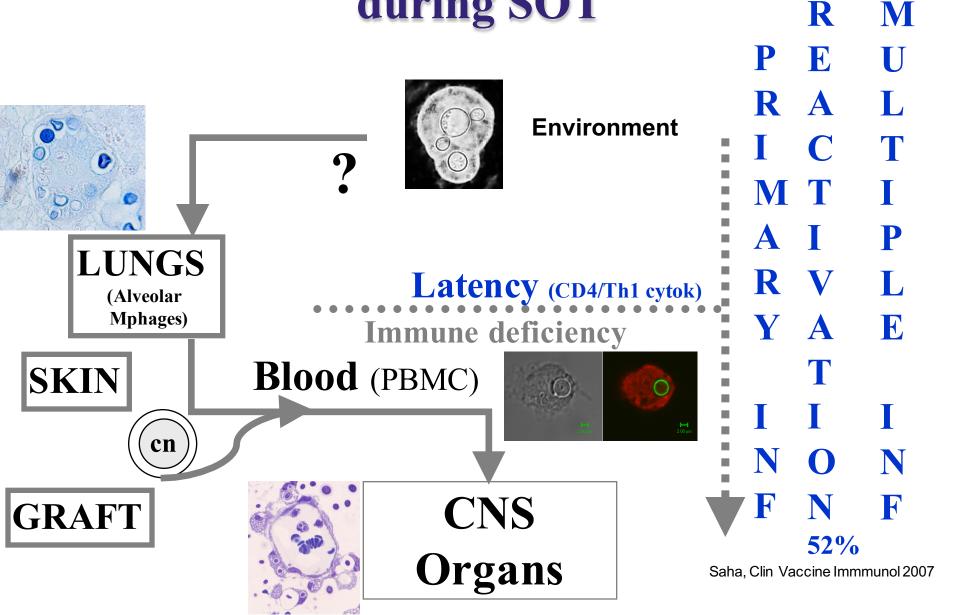

	Early IA	Late IA (>3 months post-transplant)
Liver transplant	Re-transplantation Kidney failure, especially post-transplant Haemodialysis Fulminant hepatic failure Complicated surgery or	More than 6 g of accumulative prednisone in the third month after transplantation Post-transplant renal failure Post-transplant haemodialysis Leukopenia (<500/mm ³)
Lung transplant	reoperation Bronchial anastomotic ischaemia or bronchial stent placement Acute rejection Single-lung transplant Aspergillus spp. colonization before or during first year post-transplant	Chronic graft dysfunction Chronic graft dysfunction
Heart transplant	Aspergillus spp. colonization of the respiratory tract Re-operation Post-transplant haemodialysis Hypogammaglobulinaemia (IgG < 400 mg/dl)	ICU readmission Kidney transplantation >2 acute rejection episodes
Kidney transplant	Graft lost and haemodialysis Post-transplant haemodialysis Prolonged high corticosteroid doses CMV i	infection nosuppression

ESCMID recommendations Gavalda et al. CMI 2014

Incidence of invasive aspergillosis in SOT recipients in France

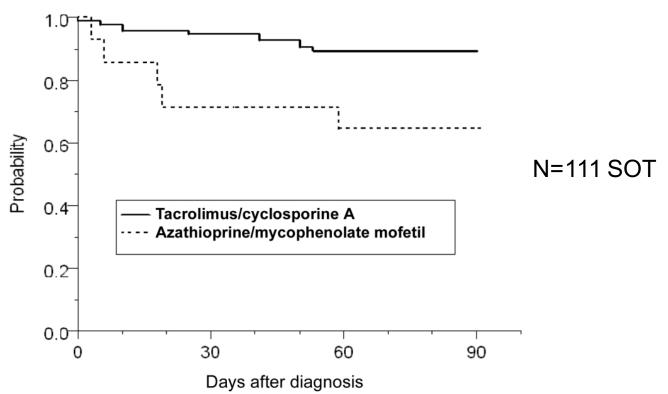
Incidence

- Heart 4.8 % (7/146) (1)
 - 1-14% (2)
 - 10 per 1000 person-years (3)
- Lung 4.1 % (7/172) (1)
 - 6-16% (2)
 - 49 per 1000 person-years (3)
- Liver 0.8 % (9/1067) (1)
 - · 1-8% (2)
 - 11 per 1000 person-years (3)
- Kidney 0.3 % (13/3157) (1)
 - 0.4-5% *(2)*
 - 2 per 1000 person-years (3)
- Late complication excepted for heart transplantation


Tracheobronchitis
44% SOT, ++ ulcerations
Fernandez Ruiz Medicine 2012

Recent case control studies of IA in kidney transplant recipients

- 16 adults, Paris 2003-2013
- 81% limited to lungs
- 12 week mortality 6%
- 1 year mortality 19%
- Cardiovascular diseases
 pretransplant, delayed graft
 function and opportunistic
 infections increase occurrence
 of IA
- IA reduces overall survival and graft survival


- 41 adults, Leuven 1995-2013
- Early onset (≤ 3 months)
 - Duration of replacement therapy pretransplant
 - Leukopenia
- Late onset (> 3 months)
 - Donor CMV seropositivity
- 12 week mortality 39%
- Dissemination, leukopenia and height of GM index increase risk of death

C. neoformans infection pathogenesis during SOT R

Beneficial roles of calcineurin inhibitors during SOT-associated cryptococcosis

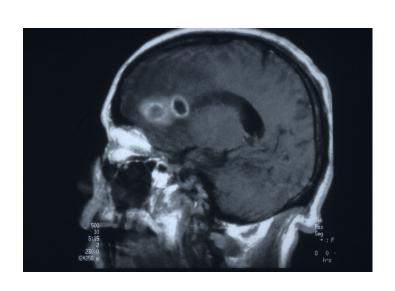
- Less disseminated forms (48 vs 80%, p=0.02)
- More pulmonary forms (37 vs 7%, p=0.02)
- Less death (OR= 0.21, p=0.008)

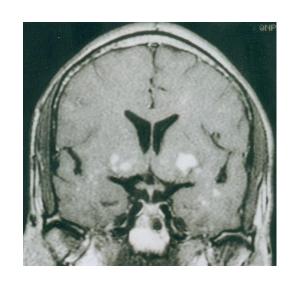
Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against *Cryptococcus neoformans* Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis[∇]

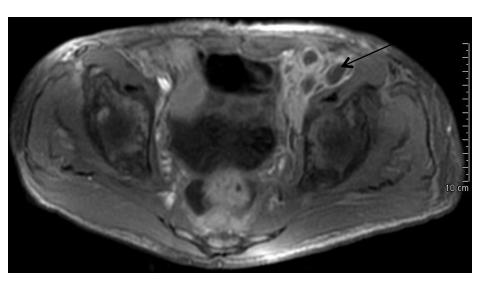
Dimitrios P. Kontoyiannis,¹* Russell E. Lewis,¹ Barbara D. Alexander,² Olivier Lortholary,³ Françoise Dromer,⁴ Krishan L. Gupta,⁵ George T. John,⁶ Ramon del Busto,⁷ Goran B. Klintmalm,⁸ Jyoti Somani,⁹ G. Marshall Lyon,⁹ Kenneth Pursell,¹⁰ Valentina Stosor,¹¹ Patricia Muňoz,¹² Ajit P. Limaye,¹³ Andre C. Kalil,¹⁴ Timothy L. Pruett,¹⁵ Julia Garcia-Diaz,¹⁶ Atul Humar,¹⁷ Sally Houston,¹⁸ Andrew A. House,¹⁹ Dannah Wray,²⁰ Susan Orloff,²¹ Lorraine A. Dowdy,²² Robert A. Fisher,²³ Joseph Heitman,³ Nathaniel D. Albert,¹ Marilyn M. Wagener,²⁴ and Nina Singh²⁴*

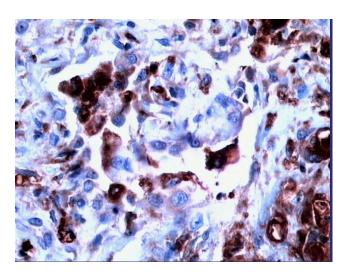
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Feb. 2008, p. 735-738

An Immune Reconstitution Syndrome–Like Illness Associated with *Cryptococcus neoformans* Infection in Organ Transplant Recipients

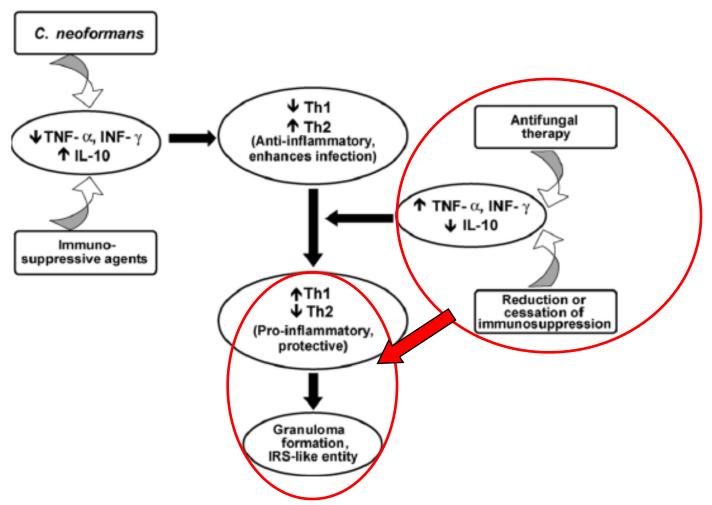

Prospective multicenter cohort: 4.8% pts


Nina Singh,¹ Olivier Lortholary,¹6 Barbara D. Alexander,² Krishan L. Gupta,¹8 George T. John,¹9 Kenneth Pursell,³ Patricia Munoz,¹7 Goran B. Klintmalm,⁵ Valentina Stosor,⁴ Ramon del Busto,⁶ Ajit P. Limaye,ⁿ Jyoti Somani,⁶ Marshall Lyon,⁶ Sally Houston,⁶ Andrew A. House,²0 Timothy L. Pruett,¹¹ Susan Orloff,¹³ Atul Humar,²¹ Lorraine Dowdy,¹o Julia Garcia-Diaz,¹⁴ Andre C. Kalil,¹⁵ Robert A. Fisher,¹² Shahid Husain,¹ and the Cryptococcal Collaborative Transplant Study Group⁶

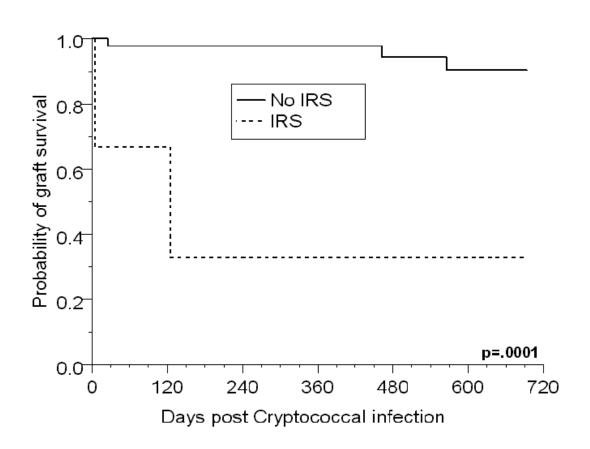

CID 2005


Type of transplant Kidney Kidney-pancreas Liver	2/4 1/4 1/4
Time to onset of <i>C.neoformans</i> infection post-transplant, median (range)	10.5 months (3-29 months)
Immunosuppressive regimen Tacrolimus, mycophenolate mofetil, prednisone	4/4
Initial sites of involvement Pulmonary (any) Skin, soft tissue (any)	2/4 2/4
Central nervous system (any) Disseminated infection*	2/4 4/4
Time to onset of IRS-like syndrome after antifungal therapy, median (range)	5.5 weeks (4-12 weeks)

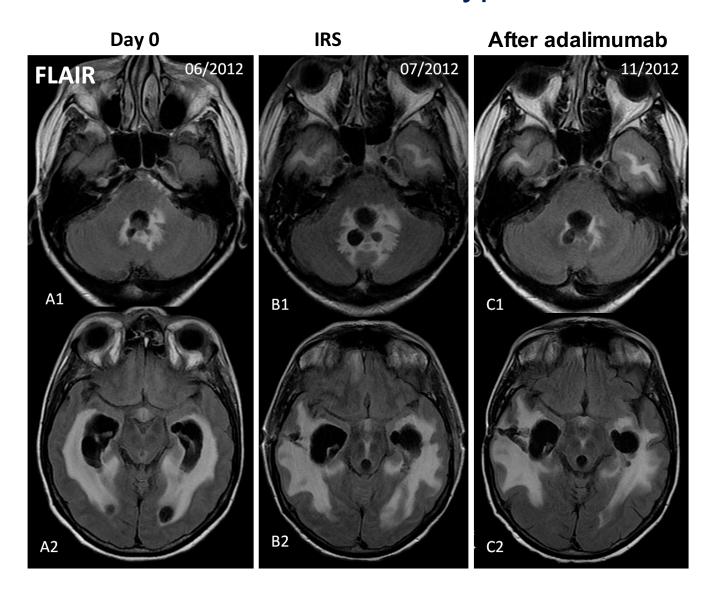
Clinical cases of cryptococcal IRIS



Reversal Th2/Th1 and proinflammatory responses and occurrence of cryptococcal IRIS during SOT?



Sun, Clin infect Dis 2011 Singh, Clin infect Dis 2005


Predictors of IRIS in SOT with cryptococcosis

Factor	IRS (n = 13)	No IRS (n = 76)	Odds of IRS, OR (95% CI)	Comparison Group	P Value
Pulmonary disease only	7.7% (1/13)	45% (34/76)	0.10 (.0183)	Extrapulmonary	.033
CNS disease	85% (11/13)	40% (30/76)	8.43 (1.74-40.75)	No CNS	.008
Fungemia	38.5% (5/13)	36% (20/55)	1.09 (.31-3.80)	No fungemia	.888
Disseminated disease	92.3% (12/13)	51.3% (39/76)	11.38 (1.41–91.95)	Local disease	.022
Discontinuation of CNI	50.0% (6/12)	13.8% (9/65)	6.88 (1.91–24.76)	Continue CNI	.008

Probability of graft survival in renal transplant recipients with cryptococcosis according to IRIS

Efficacy of a anti-TNF-α monoclonal antibody during SOT-associated cryptococcal IRIS

IFI following SOT!

- Except PjP, first 3: candidiasis, aspergillosis & cryptococcosis
- Predisposing immune deficiency to be better deciphered
- Influence of host genetic background
- Acquired resistance among Candida species
- Influence of immunosuppressive therapy
 - baseline severity and outcome
 - \pm synergy with antifungals
 - occurrence of IRIS following discontinuation
- New approaches for the management of fungal IRIS