
FUNGHI EMERGENTI (RARI)

Annamaria Nosari

Fungal agents

Invasive Non-Aspergillus Mold Infections in Transplant Recipients, United States, 2001–2006

Benjamin J. Park, Peter G. Pappas, Kathleen A. Wannemuehler, Barbara D. Alexander,

Table 1. Distribution of Mucorales, *Fusarium*, and *Scedosporium* organisms causing infection in HCT and SOT recipients, as detected in TRANSNET, United States, 2001–2006*

		No. (%) patient	S
Organism	HCT	SOT	Total
Mucorales	77 (62.1)	28 (62.2)	105 (62.1)
Rhizopus spp.	39 (50.6)	16 (57.1)	55 (52.4)
Mucor spp.	12 (15.6)	7 (25.0)	19 (18.1)
Rhizomucor spp.	7 (9.1)	0	7 (6.7)
Cunninghamella spp.	5 (6.5)	4 (14.3)	9 (8.6)
Lichtheimia spp.†	3 (3.9)	0	3 (2.9)
Apophysomyces spp.	1 (1.3)	0	1 (1.0)
Syncephalastrum spp.	1 (1.3)	0	1 (1.0)
Unspecified	9 (11.7)	1 (3.6)	10 (9.5)
Genus Fusarium	31 (25.0)	6 (13.3)	37 (21.9)
F. solani	9 (29.0)	1 (16.7)	10 (27.0)
F. oxysporum	0	2 (33.3)	2 (5.4)
F. proliferatum	2 (6.5)	0	2 (5.4)
F. verticilloides	1 (3.2)	0	1 (2.7)
Unspecified	19 (61.3)	3 (50.0)	22 (59.5)
Genus Scedosporium	16 (12.9)	11 (24.4)	27 (16.0)
S. apiospermum	13 (81.3)	6 (54.5)	19 (70.4)
S. prolificans	3 (18.8)	5 (45.5)	8 (29.6)
Total	124 (73.4)	45 (26.6)	169 (100)
			-

1208 SOT recipients
166 cases of non-Aspergillus
molds

The Mucorales (105 patients) were the most common of these molds, followed by Fusarium spp. (37 pts), and Scedosporium spp. (27 pts).

Emerg Infect Dis 2011

Invasive Non-Aspergillus Mold Infections in Transplant Recipients, United States, 2001–2006

Benjamin J. Park, Peter G. Pappas, Kathleen A. Wannemuehler, Barbara D. Alexander,

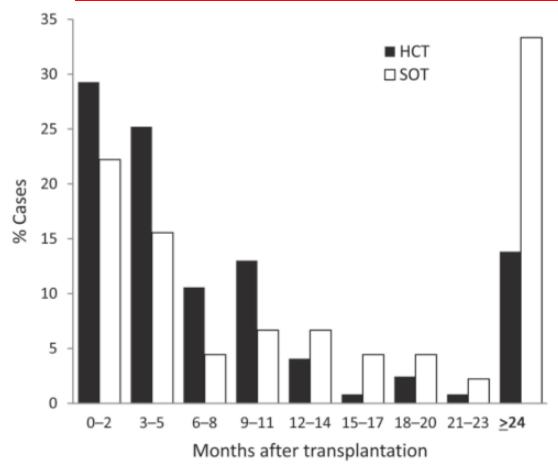
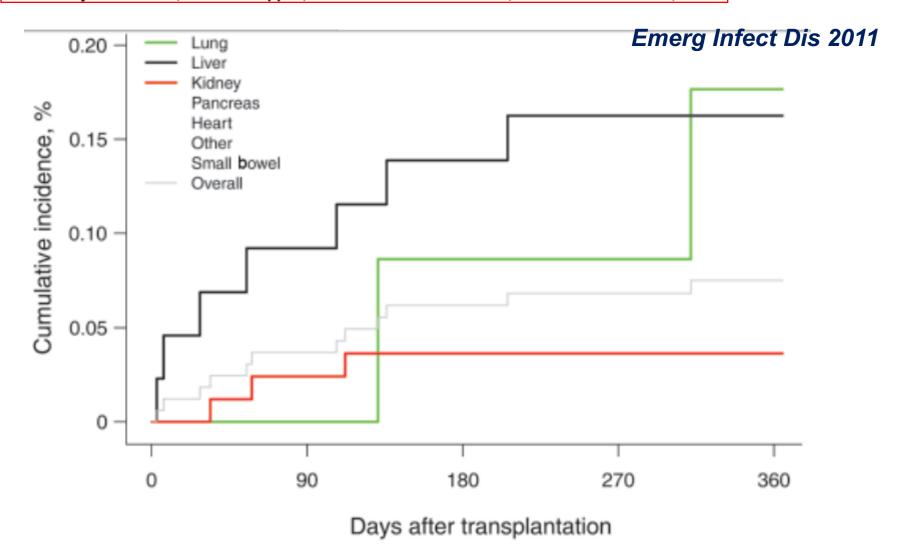
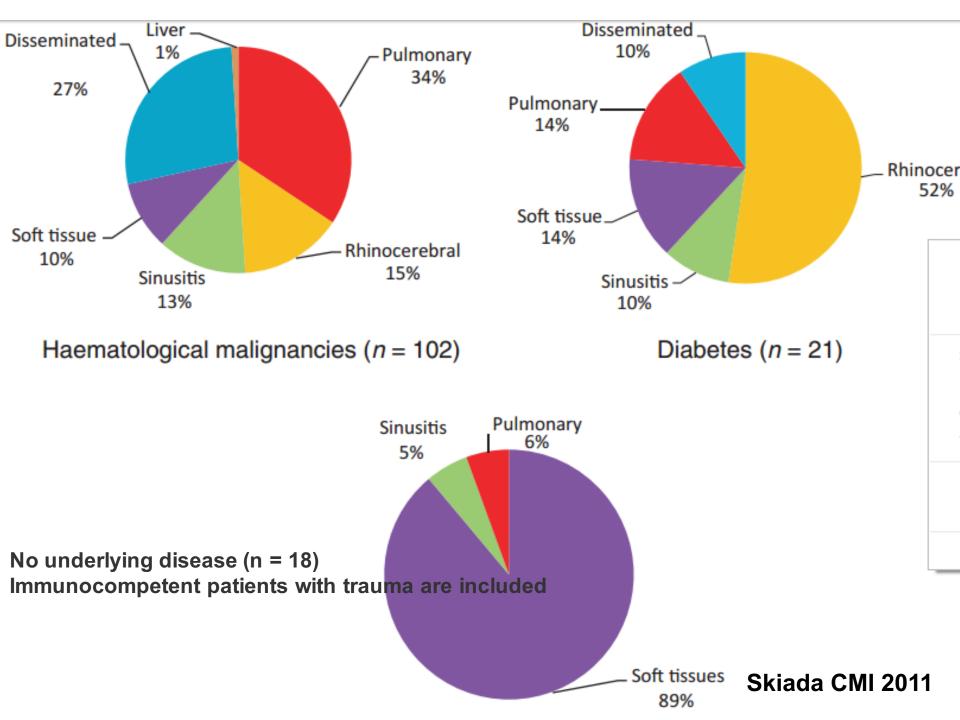



Figure 1. Months from transplant to development of invasive mucormycosis, fusariosis, or scedosporiosis among hematopoietic

Invasive Non-Aspergillus Mold Infections in Transplant Recipients, United States, 2001–2006

Benjamin J. Park, Peter G. Pappas, Kathleen A. Wannemuehler, Barbara D. Alexander,



Mucorales are characterized by wide hyphae (10-20 mm), irregularly shaped, with acute angle ramifications.

They are ubiquitarian, saprophytic, aerobic agents, that find an otpimal substratum for their growth in meat and sugar at a temperature of about \$\frac{1}{25} \text{C-35} \text{C}\$

Classes of "high risk" patients for Mucormycosis

- Substratum with high acidity (Ketoacidosis)
- Macrophage inhibition in controlling spores germination (steroids = Autoimmune diseases)
- Altered neutrophils chemotaxis (Diabetes)
- Ferrioxamine transformation in ferrirhizoferrin (IRC and Trasfusion overload recipients)
- Immunosuppressive therapy (graft = HSCT and SOT)
- ❖ NEUTROPENIA (hematological malignancy= ↑↑AML)

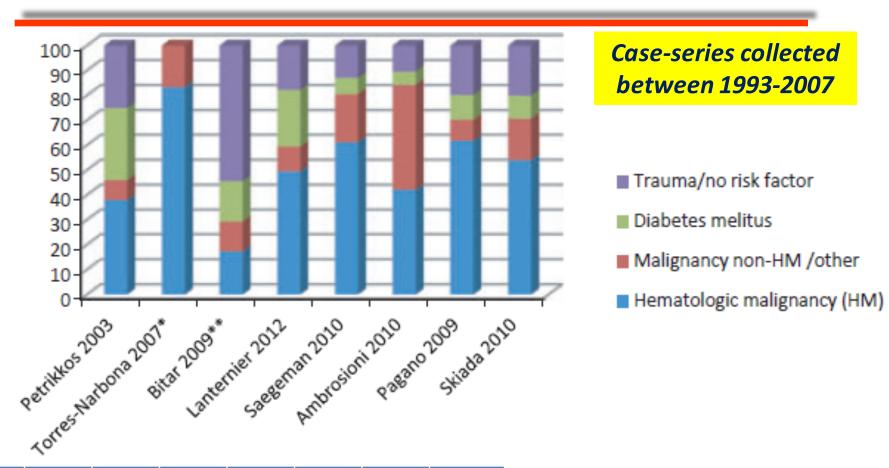
The most frequent infection form is the

rino-cerebral

one, linked to the capability of fungi to penetrate in the body through nasal and nosepharyngeal mucosa (typical of diabetic patient)

In neutropenic patients
can be instead more
easily observed the
picture of **mycotic pneumonia** with a
penetration mechanism
similar to the previous
one

Gemelli


Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007

A. Skiada¹, L. Pagano², A. Groll³, S. Zimmerli⁴, B. Dupont⁵, K. Lagrou⁶, C. Lass-Florl⁷, E. Bouza⁸, N. Klimko⁹, P. Gaustad¹⁰, M. Richardson¹¹, P. Hamal¹², M. Akova¹³, J. F. Meis¹⁴, J.-L. Rodriguez-Tudela¹⁵, E. Roilides¹⁶, A. Mitrousia-Ziouva¹⁷ and G. Petrikkos¹⁸ for the European Confederation of Medical Mycology Working Group on Zygomycosis*

sis and mortality^a

Underlying condition	Number of patients (%)	Number of patients who died (%) ^b
Haematological malignancies ^c	102 (44)	49/95 (52)
Acute myeloid leukaemia	49/102 (48)	
Acute lymphoblastic leukaemia	22/102 (22)	
Non-Hodgkin lymphoma	11/102 (11)	
Myelodysplastic syndrome	6/102 (6)	
Other	12/102 (12)	
Haematopoietic stem cell transplantation ^d	21 (9)	13/17 (76)
Other malignancies	H (5)	5/9 (56)
Solid organ transplantation	10 (4)	5/10 (50)
Diabetes mellitus	39 (17)	18/33 (55)
Trauma	39 (17)	13/32 (41)
Burn	7 (3)	2/6 (33)
HIV/AIDS	4 (2)	0/3 (0)
Aplastic anaemia	4 (2)	1/4 (25)
Other ^e	9 (4)	4/9 (44)

Epidemiology of mucormycosis in Europe

GR	SPA	FRA	FRA	BEL	СН	ITA	EU
Mono	Multi	Multi	Multi	Mono	Mono	Multi	Multi
24	6	531	101	31	19	60	230

Increasing Incidence of Mucormycosis in University Hospital, Belgium

Over a 10-year period 31 proven/probable cases

Veroniek Saegeman, Johan Ma Wouter Meersseman, Isabel S Eric Verbeken, and Katrien La

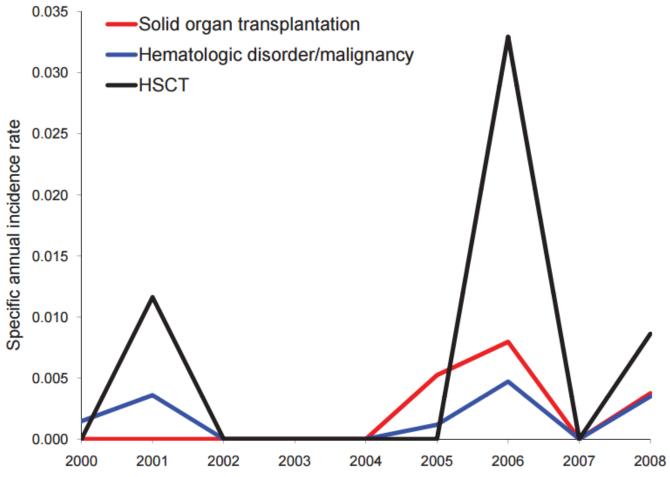


Figure 2. Specific annual incidence rate for the risk groups solid

Zygomycosis in Solid Organ Transplant Recipients: A Prospective, Matched Case-Control Study to Assess Risks for Disease and Outcome

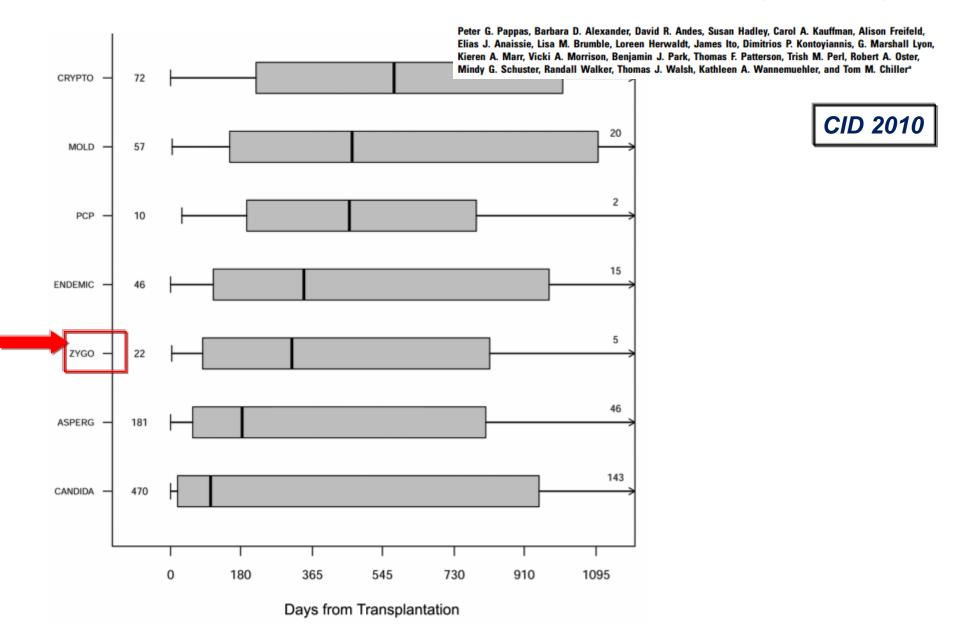
J Infect Dis 2009

Nina Singh, Jose M. Aguado, Hugo Bonatti, Graeme Forrest, Krishan L. Gupta, Nasia Safdar, George T. John,

50 pts with zygomicosis and 50 controls from 2003 through 2007

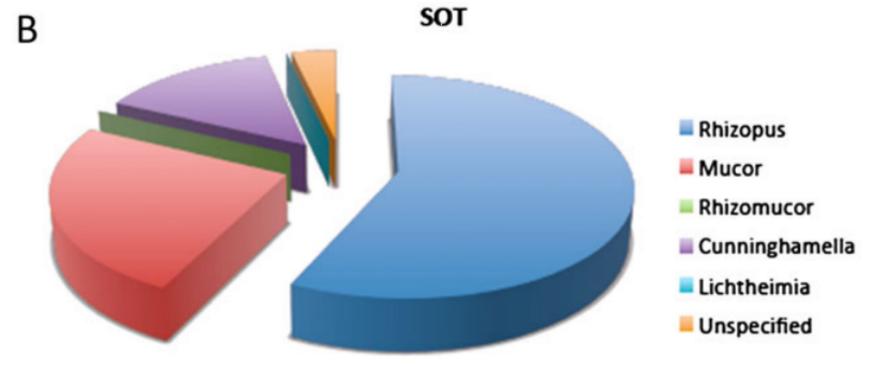
- the success rate among case patients was 60% (30 of 50 patients).
- In 4 case patients the diagnosis of zygomycosis was made at autopsy
- 5 received 7 days of antifungal therapy before death (9 dead pts)
- the initial treatment consisted of L-AmB in 17 (42%), AmB lipid complex in 8 (20%), AmB deoxycholate in 5 (12%), posaconazole in 5 (12%), and a combination of antifungal agents in 6 (15%)

Zygomycosis in Solid Organ Transplant Recipients: A Prospective, Matched Case-Control Study to Assess Risks for Disease and Outcome

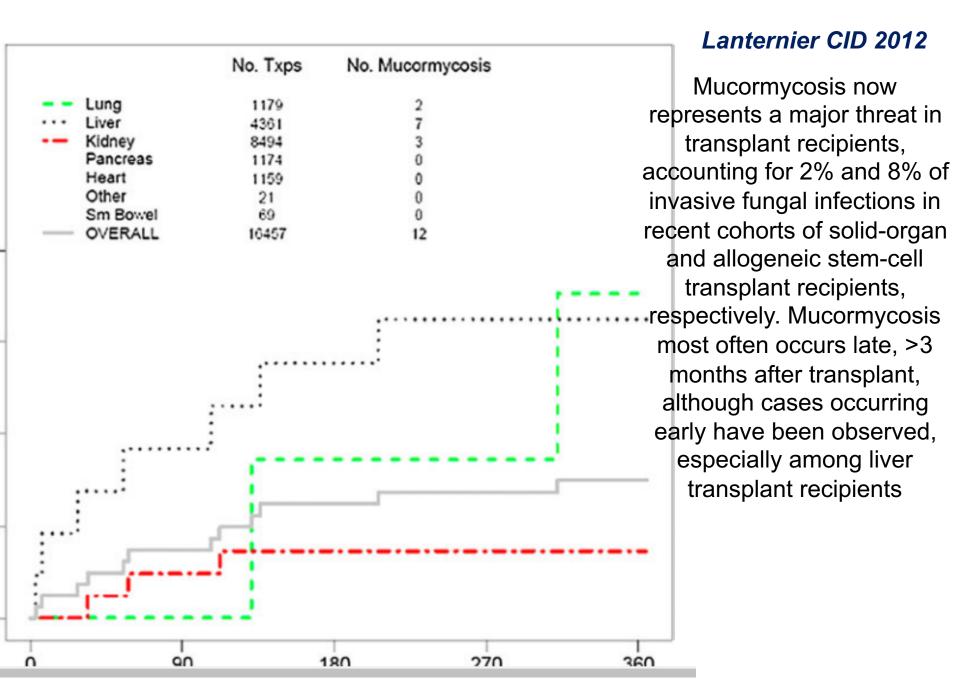

Nina Singh, Jose M. Aguado, Hugo Bonatti, Graeme Forrest, Krishan L. Gupta, Nasia Safdar, George T. John,

J Infect Dis 2009

Table 3. Risk Factors for Zygomycosis in the 50 Case Patients with Zygomycosis, Compared with Paired Control Patients


	Univariate analy	rsis	Multivariate analysis			
Variable	OR (95% CI)	Р	OR (95% CI)	Р		
Age	1.02 (0.99–1.04)	.213				
Retransplant	6.9 (1.6–31.0)	.011	5.67 (0.86–37.5)	.072		
Diabetes mellitus	3.8 (1.51-9.39)	.004	8.11 (2.70-24.4)	<.001		
Prior rejection	2.9 (1.1–7.5)	.03	2.62 (0.79-8.71)	.115		
Renal failure at baseline	2.7 (1.3-5.4)	.006	3.17 (1.31-7.65)	.010		
Dialysis at baseline	3.2 (1.4–7.5)	.007				
Cytomegalovirus infection	1.7 (0.42–6.88)	.451				
Prior voriconazole or caspofungin use	10.9 (1.4–85.2)	.002	4.41 (1.12-17.3)	.033		
Immunosuppression						
Tacrolimus	0.52 (0.30-0.88)	.016	0.23 (0.09-0.57) ^a	.002		
Cyclosporine A	1.5 (0.79–2.9)	.206				
Sirolimus	4.3 (0.43-42.0)	.215				
T cell antibodies						
Any	1.0 (0.5–1.9)	.99				
Depleting	1.2 (0.5–2.6)	.66				
Nondepleting	1.0 (0.5–2.1)	.99	***			

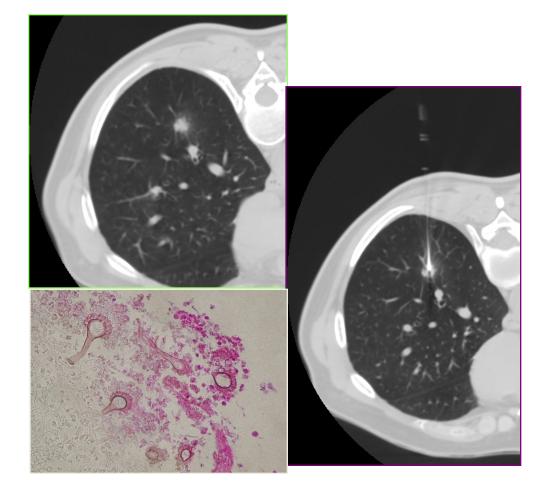
Invasive Fungal Infections among Organ Transplant Recipients: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET)



Mucormycosis in Organ and Stem Cell Transplant Recipients

Fanny Lanternier,^{1,2,3} Hsin-Yun Sun,^{5,6,7} Patricia Ribaud,^{8,9} Nina Singh,⁵ Dimitrios P. Kontoyiannis,¹⁰ and Olivier Lortholary^{1,2,3,4}

Figure 4. Distribution of Mucorales species among hematopoietic stem-cell transplant (HSCT; *A*) and solid-organ transplant (SO + B) recipients in the TRANSNET study (adapted from Park et al, *Emerg* – *ect Dis* 2011 [18], with permission from B. Park).


The overall mortality rate among SOT with mucormycosis is 38%–48%

Int J Hematol. 2009 Jun; 89(5):624-7. Epub 2009 May 27.

Role of CT-guided percutaneous lung biopsy in diagnosis of pulmonary fungal infection in patients with hematologic diseases.

Shi JM, Cai Z, Huang H, Ye XJ, He JS, Xie WZ, Zhang J, Zhou XY, Luo Y, Lin Y, Li L, Zheng WY, Wei GQ, Lin MF.

- Optimal for PCR-based diagnosis
- Complications <1%.
- NO false positivity (NO CONTAMINATION)
- Sensibility 80%; PPV 100%
- Diagnosis in 53% of not diagnostic BAL

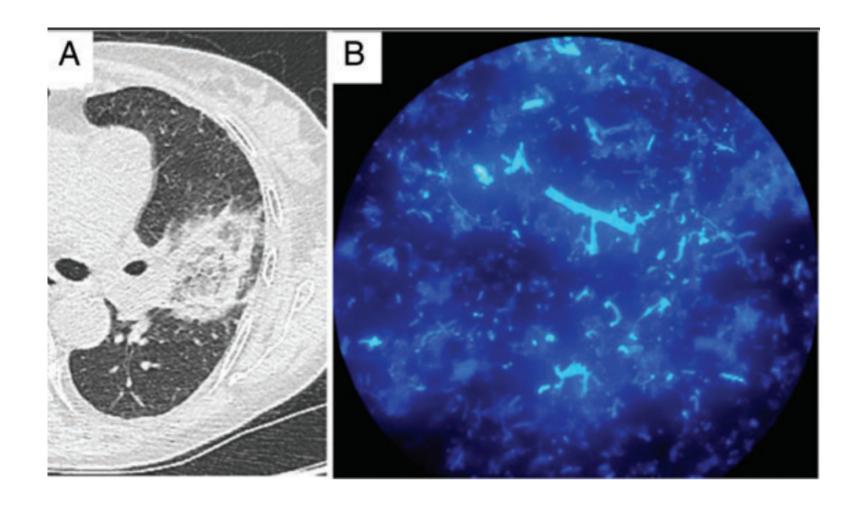
Laas-Florl et al Clin Infect Dis 2007 Gupta S. Hematologic Oncology 2009

Nosari A et al, Haematologica 2003 Carrafiello G et al Radiol Med 2006

Diagnosi

Galactomannan

mold active prophylaxis decrease the predictive value (low incidence of IA)

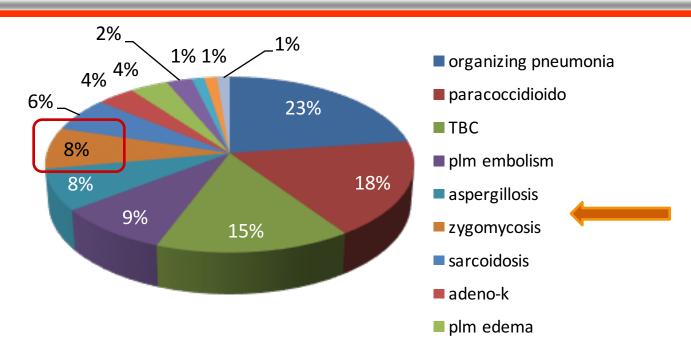

serum GM assay

- onot reliable as surveillance in asymptomatic pts on effective prophylaxis (results negative or FP)
- ouseful to diagnose pts with a clinical suspicion

Duarte CID 2014;

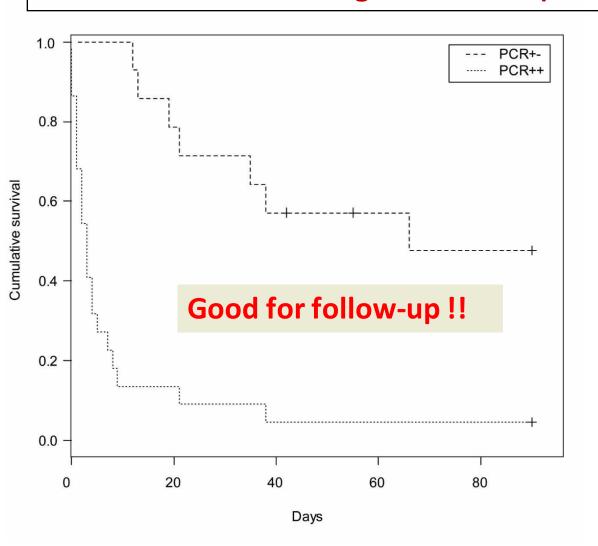
Galactomannan negative in case of mucormycosis (as well as glucan)

Diagnosi: "reversed halo sign" may be suggestive


igure 1. Computed tomographic (CT) image and microscopic examina

Reversed halo sign: high-resolution CT findings in 79 patients

2012


Edson Marchiori, Gláucia Zanetti, Dante Luiz Escuissato, Arthur Soares Souza, Jr, Gustavo de Souza Portes Meirelles, Joana Fagundes, Carolina Althoff Souza, Bruno Hochhegger, Edith M. Marom and Myrna B. C. Godoy

"RHS should be considered a relatively non specific sign"

Only 8% of reversed halo sign are in Mucormycosis

Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF).

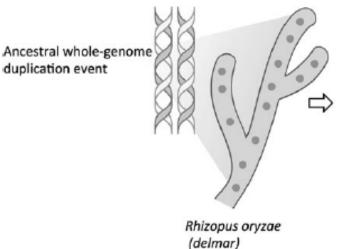
Mucorales qPCR not only could confirm the IM diagnosis when other 63 mycological arguments were present but also could anticipate this diagnosis. Quantification of 64 DNA loads may also be a useful adjunct to treatment monitoring

Is It Time to Include CT "Reverse Halo Sign" and qPCR Targeting Mucorales in Serum to EORTC-MSG Criteria for the Diagnosis of Pulmonary Mucormycosis in Leukemia Patients?

Denis Caillot,^{1,2} Stéphane Valot,³ Ingrid Lafon,¹ Louise Basmaciyan,^{3,4}
Marie Lorraine Chretien,^{1,2} Marc Sautour,^{3,4} Laurence Million,^{5,6} Caroline Legouge,^{1,2}
Alexandre Payssot,¹ and Frédéric Dalle^{3,4}

¹Department of Clinical Haematology, University Hospital, Dijon, ²Inserm Unit 866, LabEx Team, Dijon School of Medicine, ³Mycology and Parasitology Department, University Hospital, Dijon, ⁴Bourgogne Franche-Comté University, Agrosup Dijon, UMR PAM, Team Vin, Aliment, Microbiologie, Stress, ⁵Chrono-Environnement UMR, 6249 CNRS, Bourgogne Franche-Comté University, Besançon, and ⁶Parasitology-Mycology Department, University Hospital, Besançon, France

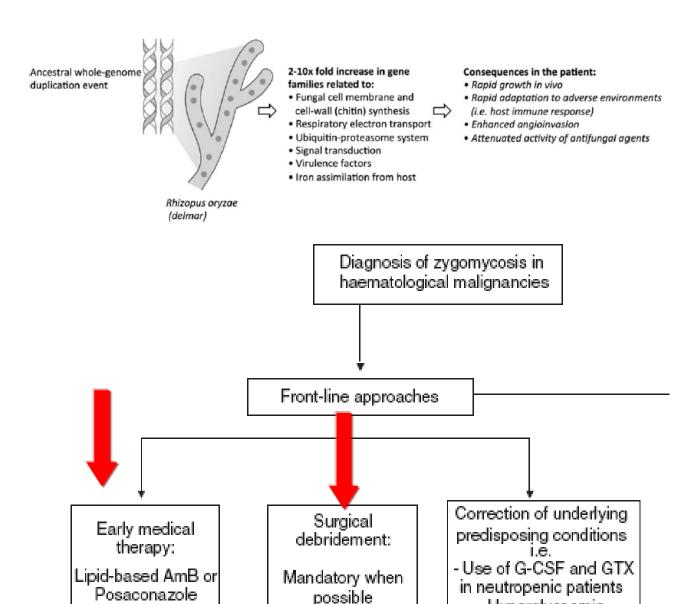
In 23 leukemia patients with proven (n = 17) or possible (n = 6) pulmonary mucormycosis (PM), the presence of reversed halo sign on computed tomography was strongly associated with the positivity of quantitative polymerase chain reaction assays targeting Mucorales in the serum, confirming the value of these two tools for the diagnosis of PM in this setting.


Keywords. early diagnosis; leukemia; pulmonary mucormycosis; quantitative polymerase chain reaction; reversed halo sign. first-line treatment for invasive molds infections, and (iv) the lack of sensibility of noninvasive techniques for conventional diagnosis (ie, culture, direct examination), new tools were needed for the early and specific diagnosis of PM aimed at distinguishing PM from IPA to initiate appropriate therapy and improve the outcome of patients suffering from PM.

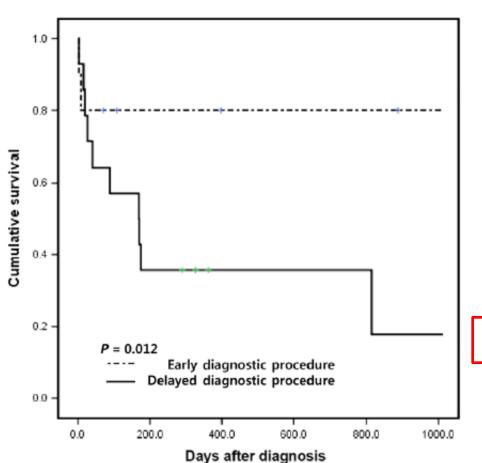
Recently, two publications provided attractive tools that could be useful in the specific diagnosis of PM in at-risk patients. First, a study by our team concluded that the reversed halo sign (RHS) on computed tomography (CT) scan was strongly associated with PM in the particular setting of neutropenic leukemia patients with pulmonary infections [6]. Second, Millon et al reported the usefulness of the screening of at-risk patients using specific quantitative polymerase chain reaction (qPCR) targeting circulating DNA of Mucorales in the serum for the early diagnosis of invasive mucormycosis [7]. The aim of the present study was to investigate the usefulness of combining CT scan and qPCR screening for the early diagnosis of PM in a retrospective series of neutropenic leukemia patients with proven or possible PM.

All of the patients included in this study were selected as previously described [6]. Briefly, leukemia patients with prolonged neutropenia (>10 days) who were treated for proven or possible PM between 2004 and 2014 at the Clinical Hematology Department, University Hospital of Dijon, France, based on the pres-

How Does Antifungal Pharmacology Differ for Mucormycosis Versus Aspergillosis?


Russell E. Lewis,^{1,5} Olivier Lortholary,² Brad Spellberg,³ Emmanuel Roilides,⁴ Dimitrios P. Kontoyiannis,⁵ and Thomas J. Walsh⁶

- Ability to grow under varying conditions
- Production of several virulence factors (proteases, subtilase)
- Ability to accelerated synthesis and remodeling
- of membrane and cell wall -
- Assimilative capacity of the iron from Hb' host



- Angio-invasive growth in humans
- Adaptability in hostile conditions
- Resistance to systemic antifungal therapies

Pagano et al., Br J Haematol 2009; 146(6):597-606

 Hyperglycaemia correction Delaying diagnostic procedure significantly increases mortality in patients with invasive mucormycosis

2005-2014 30 pts with proven/probable IM

	Odds ratio	95% CI	P value
Age Repol failure	0.96	0.88–1.04	0.38
Delayed diagnostic procedure (≥16 days)	12.34	1.43–10.64	0.022

Factors influencing the course of Zygomycosis

Pagano et al, Haematologica 2004

Univariate analysis	P-value
♣ Age	ns
❖ Sex (M vs F)	0.033
 Hematological disease 	ns
❖ Steroids use	ns
 Hematological disease phase 	ns
❖ PMN recovery (yes vs no)	0.01
Infection site (lung vs other)	ns
 AmB compounds vs other 	0.01
❖L-AmB vs other treatments	0.001

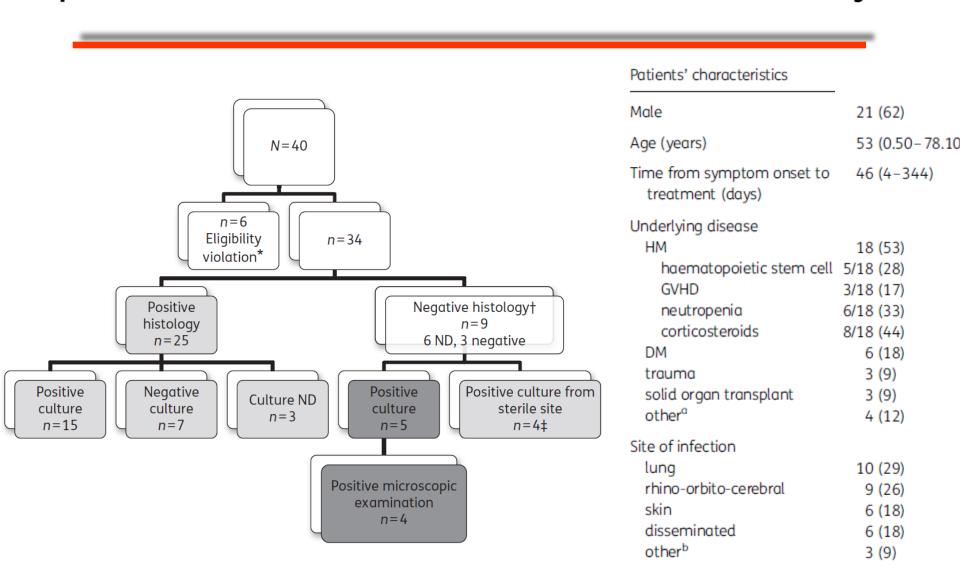
At a multivariate analysis only the treatment with L-AmB [RR=0.5 (CI 0.3-0.8; p=0.0001)] is significant

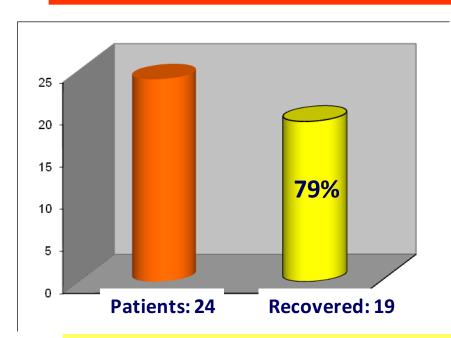
How is the better dose of L-AmB?

- * 3 mg/kg? (Pagano et al, Haematologica 2004)
- ♦ 3 → 5 mg/kg? (Petrikkos et al, Eur J Clin Micr Infect Dis 2003)
- \div 7.5 \rightarrow 15 mg/kg? (Walsh et al, AAC 2001)

Probably 5-7 mg/kg must be considered the better dosage

Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis




Table 3. Treatment response according to Herbrecht and Segal criteria

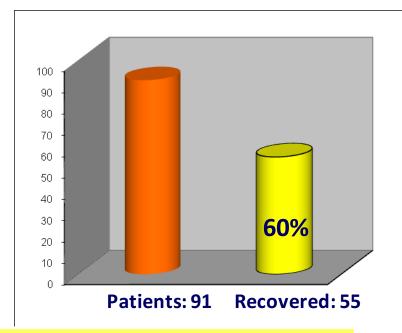

	Herbrecht, W4 or EOT if before (n=33) ^a	Segal, W4 or EOT if before (n=32) ^b	Herbrecht, W12 (n=31) ^c	Segal, W12 (n=31) ^c
Favourable response	12/33 (36%)	10/32 (31%)	14/31 (45%)	15/31 (48%)
partial response	6/33 (18%)	4/32 (13%)	4/31 (13%)	6/31 (19%)
complete response	6/33 (18%)	6/32 (19%)	10/31 (32%)	9/31 (29%)
Failure	21/33 (64%)	22/32 (69%)	17/31 (55%)	16/31 (52%)
stable	4/33 (12%)	7/32 (22%)	2/31 (6%)	1/31 (3%)
failure without death	10/33 (30%)	8/32 (25%)	2/31 (6%)	2/31 (6%)
death ^d	7/34 (21%)	7/34 (21%)	13/34 (38%)	13/34 (38%)
related to mucormycosis	5/34 (15%)		9/34 (26%)	
not related to mucormycosis	2/34 (6%)		4/34 (12%)	

Table 4. Adverse events related to L-AMB

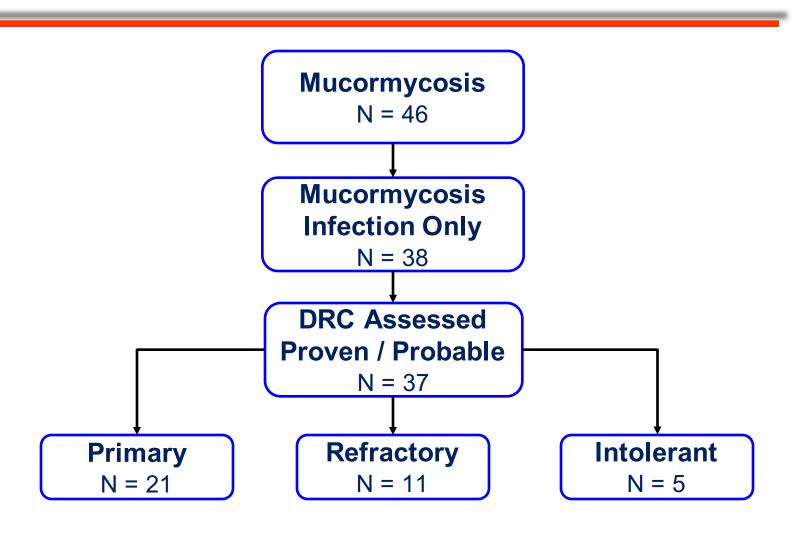
	No. (%)	Dose reduction	Treatment interruption	Definitive treatment interruption	Serious adverse events
Doubling of creatinine level ^a	16 (40)	7 (17)	5 (12)	1 (2)	4 (10)
Potassium level <2.5 mmol/L <3 mmol/L ^b	2 (5) 16 (40)	0 1 (2)	0	0 0	1 (2) 2 (5)
Gastrointestinal	10 (25)	0	2 (5)	0	1 (2)
Rash	5 (12)	1 (2)	0	0	1 (2)
Elevation of liver enzymes ^c	4 (10)	1 (2)	1 (2)	0	0
Cholestasis	6 (15)	1 (2)	1 (2)	1 (2)	1 (2)
Lumbar pain Hyperglycaem Fail t	o de	monstr	ate a sup	erior efficacy	1 (2)
Catheter thrombosis	1 (2)	0	0	0	1 (2)
Low blood pressure	3 (7)	0	0	0	0
Fever	3 (7)	0	1 (2)	0	0
Cytopenia	7 (17)	1 (2)	0	1 (2)	1 (2)

Posaconazole in the treatment of proven/probable Mucormycosis

♦ All ref
• 11 r

❖11 rhi

❖ POS 8


Durat

Two separate, but overlapping series of patients receiving posaconazole within compassionate use protocols of the manufacturer have been published

C

Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis

Marty et al, Lancet Infect Dis 2016

Overall Response for Mucormycosis

Overall Response at EOT	Primary N = 21 %	Refractory N = 11 %	Intolerant N = 5 %	Total N = 37 %
Success	31.6	36.4	20.0	31.4
Complete	15.8	18.2	0	14.3
Partial	15.8	18.2	20.0	17.1
Failure	68.4	63.6	80.0	68.6
Stable	31.6	18.2	40.0	28.6
Progression	36.8	45.5	40.0	40.0

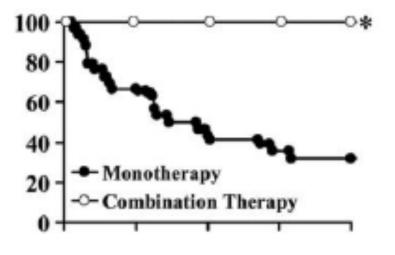
Combination Therapy for Mucormycosis: Why, What, and How?

Brad Spellberg, 1,2 Ashraf Ibrahim, 2,3 Emmanuel Roilides, Russel E. Lewis, 4,5 Olivier Lortholary, 9,10 George Petrikkos, Dimitrios P. Kontoyiannis, and Thomas J. Walsh

WHY?

The mortality rate of mucormycosis with monotherapy remains unacceptable

WHAT?


The proposed strategy should have shown:

- 1) Markedly improved survival in relevant animal models of IM.
- 2) Available retrospective or observational clinical data, concordant with preclinical models
- 3) Involvement of agents already approved for the use in humans

Combination Polyene-Echinocandin in Rhino-Cerebral Zygomycosis Reed et al. Clin Infect Dis 2008

- ✓ 12 Year Retrospective Review (37cases)
- ✓ Rhino-orbito-cerebral zygomycosis
- ✓ Monotherapy with AmB formulation (31 patients) *versus* a combination of caspofungin and ABLC or L-AmB (6 patients)

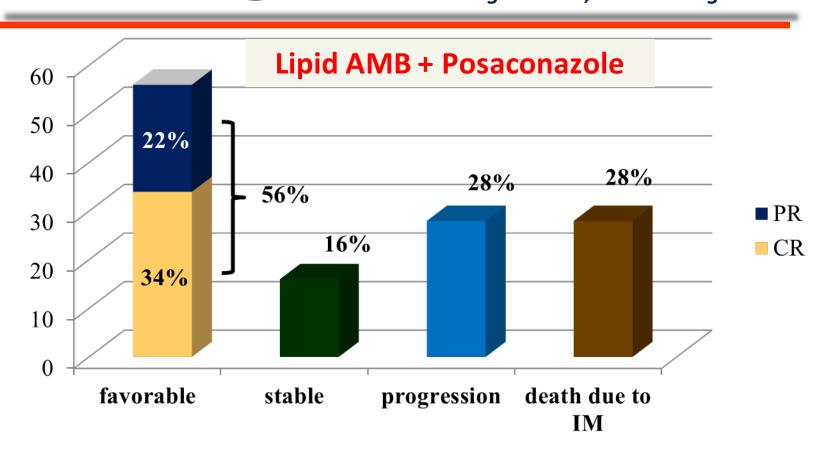
	Proportion of patients (%)			Proportion of patients (%)		Proportion of patients (%)			
Patients	Monotherapy	Combination therapy	Ρ	ABLC	AmB or LAmB	P	ABLC	ABLC plus caspofungin	Ρ
Evaluable	14/31 (45)	6/6 (100)	.019	7/19 (37)	13/18 (72)	.029	3/15 (20)	4/4 (100)	.009
All	14/34 (41)	6/7 (86)	.040	7/22 (32)	13/19 (68)	.018	3/17 (18)	4/5 (80)	.021
With CNS disease	4/16 (25)	4/4 (100)	.015	3/12 (25)	5/8 (63)	.113	1/10 (10)	2/2 (100)	.047

Pts receiving COMBO had a significantly higher response rate and survival

LIMITS: LOW NUMBER most of pts had diabetes rhinocerebral forms only all had surgery

Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007

Skiada et al, CMI 2011

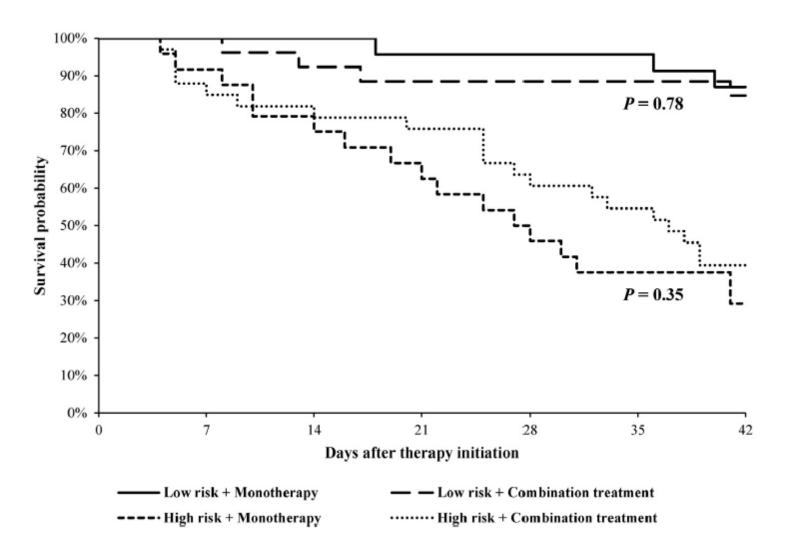

Amphotericin B alone ^b	90 (39)	32/82 (39)
d-AmB	12/90 (13)	6/12 (50)
L-AmB	68/90 (76)	20/62 (32)
ABLC	4/90 (4)	2/4 (50)
Unspecified ampho B	6/90 (7)	4/4 (100)
Amphotericin B + posaconazole ^D	48 (21)	13/43 (30)
Amphotericin B + Posa + other ^c	13 (6)	34% 2/11 (18)
Amphotericn B + other ^c	16 (7)	11/16 (69)

^bPosaconazole was administered either in combination with (18 cases, 38%) or sequentially following amphotericin B treatment (28/48 cases, 58%). In two cases it was unclear whether they were given in combination or sequentially. The formulation of amphotericin B used was liposomal amphotericin B in 43 cases (90%).

^cCaspofungin, itraconazole, voriconazole, fluconazole.

Combined antifungal approach for the treatment of invasive mucormycosis in patients with hematologic diseases: a report from the SEIFEM and FUNGISCOPE registries

Pagano et al, Haematologica 2013



32 patients, 8 of them allo-HSCT (25%), not responsive to monotherapy and with an advanced disease

Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis

Clinical Microbiology and Infection 22 (2016)

A. Kyvernitakis ^{1, 2}, H.A. Torres ¹, Y. Jiang ¹, G. Chamilos ³, R.E. Lewis ⁴, D.P. Kontoyiannis ^{1, *}

Surgery and Mucormycosis

Surgery	Yes	No
	Death/treated	Death/treated

Mortality in ECMM Study

230 cases

Surgical treatment related to decreased mortality (Odds ratio 0.21, 95% CI 0.09-0.48, p=0.001)

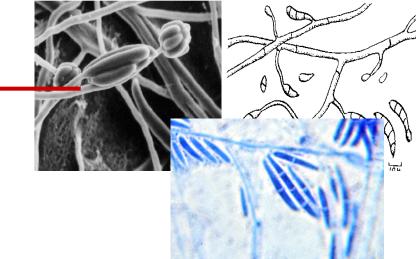
		Skiada et al, CMI 2011
Dis 2003	0/ 1/	///
Sims et al, Arch Med Res 2006	2/12	2/4
Total	13/73	73/98
	(17%)	(74%)

EMERGENCY AND ELECTIVE PULMONARY SURGICAL RESECTION IN HAEMATOLOGICAL PATIENTS WITH INVASIVE FUNGAL INFECTIONS: A REPORT OF 50 CASES IN A SINGLE CENTRE

	Emergency surgery	Elective surgery	All patients
	(n = 27)	(n = 23)	(n = 50)
Peri-operative data	•		
Median time (d) between IFI and surgery (range)	7 (2-41) *	35 (4-113) *	15 (2-113)
Unknown evaluation of haematological response before surgery	15 (56%) *	2 (9%) *	17 (34%)
Single fungal lesion on CT at time of surgery	9 (33%) *	17 (74%) *	26 (52%)
- in case of PM	5/5	6/7	11/12 (92%)
- in case of IPA or other IFI	4/22 *	11/16 *	15/38 (39%)
Persistent neutropenia (PMN<0.5G/l) at time of surgery	13 (48%) *	2 (9%) *	15 (30%)
Platelets transfusions during operative procedure	21 (78%) *	6 (26%) *	27 (54%)
Surgical procedures			
Lobectomy	26 (96%) *	14 (61%) *	40 (80%)
Wedge resection or Segmentectomy	1 (4%)*	9 (31%)*	10 (20%)
Assisted video-thoracoscopy	0 (0%) *	5 (22%) *	5 (10%)
Post-operative data			
Patients requiring intensive care unit (ICU)	16 (59%) *	7 (30%) *	23 (46%)
- median time (d) in ICU (range)	1 (0.5-30)	1 (1-2)	1 (0.5-30)
Median time (d) to hospital discharge post surgery	11 (6-30) *	7 (1-20) *	8 (1-30)
Level of confidence of IFI diagnosis after surgery**			
Proven IPA	21 (78%)	15 (66%)	36 (72%)
Proven PM	5 (18%)	7 (30%)	12 (24%)
Proven IFI due to T. longibrachiatum	1 (4%)		1 (2%)
Probable IPA	-	1 (4%)	1 (2%)
Haematological responses and outcome			
Patients achieving haematological CR	21 (78%)	18 (78%)	39 (78%)
Patients receiving new haematological therapy after surgery	25 (93%)	19 (83%)	44 (88%)
Survival at 1 month post surgery	25 (93%)	22 (96%)	47 (94%)
Survival at 3 months post surgery	24 (89%)	21 (91%)	45 (90%)
Survival at 6 months post surgery	21 (78%)	18 (78%)	39 (78%)

 FABLE 8. Recommendations on targeted first-line treatment of mucormycosis in adult patients

Population	Intention	Intervention	SoR	QoE	Comment	References
Any	To increase survival rates	Surgical debridement	Α	llu	n = 32 n = 90	120
					n = 45	38
					n = 9	7
					n = 59	25
	-	6 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			n = 92, paediatric	121
Any	To cure and to increase survival rates	Surgical debridement in addition to antifungal	Α	llu	n = 470 n = 19	3 122
	survivai rates	treatment			n = 19 n = 90	7
					n = 92, paediatric	121
Immunocompromised	To increase survival rates	Immediate treatment initiation	Α	llu	n = 70	27
Any	To cure and to increase	Amphotericin B, liposomal ≥5 mg/kg ^a	Α	llu	n = 4	105
	survival rates				n = 16	196
					n = 5	128
					n = 21 n = 28	26 152
					n = 130	7
					n = 40	57
					Animal model	124
					Animal model	125
CNS	To cure	Amphotericin B, liposomal 10 mg/kg, initial 28 days ^a	Α	II	Animal model	127
A CNIS	T	Annalysis D. Bald annalys Franks		11	Animal model	126
Any, except CNS	To cure	Amphotericin B, lipid complex 5 mg/kg ^a	В	llu	n = 10 n = 7	130 7
					Animal model	126
					Animal model	127
Any	To cure	Posaconazole 4 × 200 mg/day or 2 × 400 mg/day ^a	В	llu	n = 8	26
					n = 17	7
	-	11.11			Animal model	131
Any	To cure To cure	Lipid-based amphotericin plus caspolungin*	D		n = 7	135 137
Any	10 cure	Amphotericin B, deoxycholate, any dose ^a	D	1	Renal toxicity $n = 9$	105
					n = 532	3
Tortorano et	t al, CMI 2014.				Renal toxicity	136
					n = 10	38
					n = 21	7


 TABLE 13. Recommendations for mucormycosis in solid organ transplant recipients

Population	Intention	Intervention	SoR	QoE	Comment	References
Solid organ transplantation	To cure	AmB lipid formulation	A	llh	n = 25 n = 14, pulmonary	178 177
Solid organ transplantation	To cure	Surgery	A	llu	n = 3 n = 11, pulmonary n = 10, sinu-nasal-cerebral	25 177 179

QoE, quality of evidence; SoR, strength of recommendation.

Fusarium spp.

- Plant pathogen, soil saprophyte
- Inalation, ingestion, direct inoculation
- Includes *F.solani* (50% isolates), *F.moniliforme*, *F.oxysporum*

A wide spectrum of clinical manifestations

Due to a device

- cheratitis by contact lens
- CVC related infection

Single organ infection

- cheratitis, endophtalmitis
- •onicomicosis

Disseminated

(immunocompromised pts)

- FUO
- skin
- lung/sinusitis
- sepsis
- cellulitis
- CNS

Fusarium versus Aspergillus

		FUSARIOSIS
CLINICAL FEATURES	Persitent fever	$\sqrt{}$
FLATURES	Sinopulmonary infection	$\sqrt{}$
	Skin lesions	√
		50-70%
	Myalgias	$\sqrt{}$
RADIOLOGY	Subpleural opacity	$\sqrt{}$
	Cavitation	$\sqrt{}$
HISTO-	Angioinvasion	$\sqrt{}$
PATHOLOGY	Acute branching septate hyphae	√
MICROBIOLOGY	Positive blood coltures	√
		50-70%
	1,3-β-D-glucan	$\sqrt{}$

Invasive and disseminated fusariosis

HSCT (mainly allogeneic)

ITALY 0.2% (SEIFEM, Pagano et al CID 2007)

USA 3% (TRANSNET, Kontoyiannis et al CID 2010)

BRAZIL 2% (9 centers; Nucci et al CID 2004)

BRAZIL 5.2% (8 centers; Nucci et al CMI 2013)

Acute myeloid leukemia

ITALY 0.4% (SEIFEM, Pagano et al Haematologica 2006)

BRAZIL 3.8% (8 centers; Nucci et al CMI 2013)

Solid organ transplant

Very rare (mainly in lung recipients; Carneiro et al Medicine 2011)

ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others

Diagnosis of fusariosis

★ Chest CT: A III

Non specific

Marom AJR 2008

★ Direct microscopy: A III

Non specific. Positive direct microscopy supports growth in culture

★ Histopathology: A III

angle branching hypnae similar to those of *Aspergillus*

★ Culture: AIII

Isolation of *Fusarium* in culture needed for a definitive diagnosis in presence of hyphae in tissue

Fusarium spp. easily recovered on routine mycological media without cycloheximide.

Caution in interpretation of growth (possible contamination)

Blood cultures have a high yield.

Easily isolated from skin biopsy (frequent metastatic skin lesions)

In vitro susceptibility of Fusarium spp.

 TABLE 1. Overview of possible in vitro antifungal susceptibility patterns for selected hyalohyphomycetes

Pathogen	AMB	Flucytosine	Echinocandins	Fluconazole	Itraconazole	Voriconazole	Posaconazole
Fusarium solani	I-R	R	R	R	R	S-I-R	S-I-R
Scedosporium apiospermum	I-R	R	S	I-R	S-R	S	S
Scedosporium boydii	I-R	R	S	I-R	S-R	S	S
Scedosporium aurantiacum	R	NT	R	NT	R	S	S-R
Scedosporium prolificans	R	R	S-I-R	R	R	R	R
Paecilomyces species	S	1	R	R	S	I-S	S
Purpureocillium liliacinum	R	R	R	R	S	S	S
Acremonium species	S-R	R	R	R	S-R	S-R	S-R
Scopulariopsis species	I-R	R	NT	R	R	R	I-R

INACTIVE

- 5- Flucytosine
- Ketoconazole
- Fluconazole
- Itraconazole
- Caspofungin
- Anidulafungin/Micafungin

ACTIVE

AmB and lipid formulations

- Voriconazole
- Posaconazole/Ravuconazole
- Terbinafine
- AmB + Rifampicine
- AmB + Azithromycin

TABLE 5. Summary of recommendations for treatment of Fusarium infection

Population	Intention	SoR	QoE	Comment
Immunocompromised	First-line treatment			
patients	Voriconazole	Α	llt,r	Therapeutic drug monitoring required
				Response rate was associated with underlying condition and infection site
	Liposomal amphotericin B	В	llt,r	Fungi may be resistant to amphotericin B
	Amphotericin B lipid complex	С	III.	Limited case reports
	Amphotericin B deoxycholate	D	llt,u	Fungi often resistant to amphotericin B
	,			Breakthrough infections may occur
				Excessive toxicity
	Any echinocandin	D	III	Intrinsically resistant
	Any combination therapy	С	III	Limited reports
	,			Combination not better than voriconazole alor
	Salvage treatment			
	Posaconazole	Α	II	Overall success rate 50%
				Breakthrough infections
				Therapeutic drug monitoring required
	Voriconazole	Α	III	Substantial efficacy
				Therapeutic drug monitoring required

International Retrospective Analysis of 73 Cases of Invasive Fusariosis Treated with Voriconazole[∇]

Olivier Lortholary, 1,2 Gaelle Obenga, Pinaki Biswas, Denis Caillot, Elisabeth Chachaty, Anne-Lise Bienvenu, Muriel Cornet, John Greene, Raoul Herbrecht, Claire Lacroix, Frédéric Grenouillet, Issam Raad, Karine Sitbon, Peter Troke, and the French Mycoses Study Group; AAC 2010

78% with HMs Overall 90-day survival **42%**

- primary = salvage therapy
- vori alone = combo

TABLE 4. Comparisons of outcomes for invasive fusariosis cases treated with voriconazole

Comparison (statistical method) ^a	No. with clinical response/ total no. of patients (%)	P value
Male vs female (C)	21/48 (44) vs 13/25 (52)	NS^b
Proven vs probable infection (C)	31/67 (46) vs 4/6 (67)	NS
Primary vs salvage/unknown therapy (C)	7/16 (44) vs 27/57 (47)	NS
Combination vs voriconazole alone/unknown (C)	6/13 (46) vs 28/60 (47)	NS
Voriconazole database vs NRCMA (C)	20/39 (51) vs 14/34 (41)	NS
Neutropenia (F)		$\leq 0.03^{c}$
Recent	17/47 (36)	
None	5/7 (71)	
Status unknown	12/19 (63)	
Fusarium species (F)		NS
F. solani complex	9/16 (56)	
F. moniliforme complex	2/8 (25)	
F. proliferatum complex	4/8 (50)	
F. oxysporum complex	6/7 (86)	
All other Fusarium spp.	13/34 (38)	

Fusariosis outcome in HMs

Study (years)	Drug in study	Cases (n)	Favorable outcome, n (RR)
Clinical trials			
Walsh et al.† (1990–1995)	AmB lipid complex	11	9 (82%)
Perfect (1996–2000)	AmB lipid complex	26	12 (46%)
Raad et al. ⁺ (n.r.)	Posaconazole	21	10 (48%)
Perfect et al.† (n.r.)	Voriconazole	11	5 (45.5%)
Total		69	3 6 (52%)
Case series	52% (45-82	%) in clinical trials	
Nucci et al. (n.r.)	Mixed	84	66 (79%)
Nucci et al. (1985–2001)	Mixed	54 allo-HSCT, 7 auto-HSCT (0.1%)	8 (13%)
Campo et al. (1998–2009)	Mixed	44	15 (34%)
Kontoyiannis et al. (2001–2006)	Mixed	31 allo-HSCT	2 (6%)
Hsiue et al. (2000–2008)	Mixed	12	7 (58%)
Lortholary et al. (1996–2002)	Voriconazole	73	30 (41%)
Total		305	128 (42%)
	42% (6-79	9%) in case series	

Improvement in the outcome of invasive fusariosis in the last decade

Nucci et al, CMI 2014

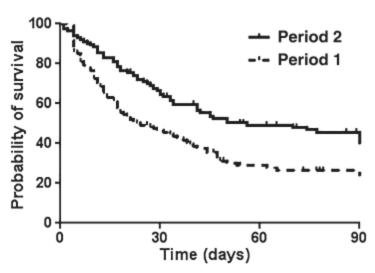


FIG. I. Probability of 90-day survival of 233 patients with invasive fusariosis in period 1 (1985–2000) and period 2 (2001–2011).

Treatment of *Fusarium* infections

First line treatment of disseminated infection in immunocompromised pts

★ Voriconazole: A II

IV: 6mg/Kg BID (1 day); 4mg/Kg BID (3

days)

Oral: 200mg BID

47% complete/partial response

TDM required

Perfect CID 2003 Campo J Inf 2010

Lortholary AAC 2010

★ Liposomal AMB: B II

★AMB lipid complex: **C III**

★ Conventional AMB: DII

Fusarium may be resistant

to AMB

High dosage required

Nucci Cancer 2003

Jensen CMI 2004

Musa BrlHaemat 2000

Patterson Clin Ped 1996

★ Echinocandins: D III

Fusarium intrinsically resistant

Nucci CID 2004

★ Any combination: CIII

Unclear results

Campo J Inf 2010 Lortholary AAC 2010

Treatment of *Fusarium* infections

Second line treatment of disseminated infection in immunocompromised pts

★ Posaconazole: A II

200mg QID or 400mg BID

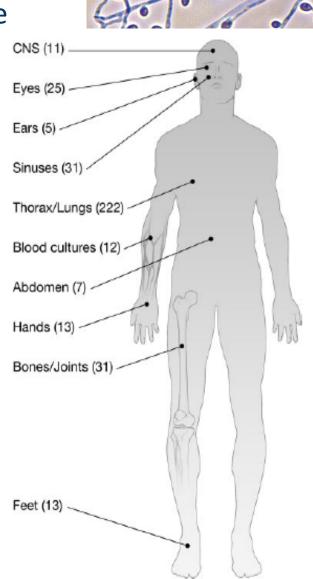
48% complete/partial response

Breakthrough infections during prophylaxis

TDM required

Raas CID 2006 Campo J Inf 2010

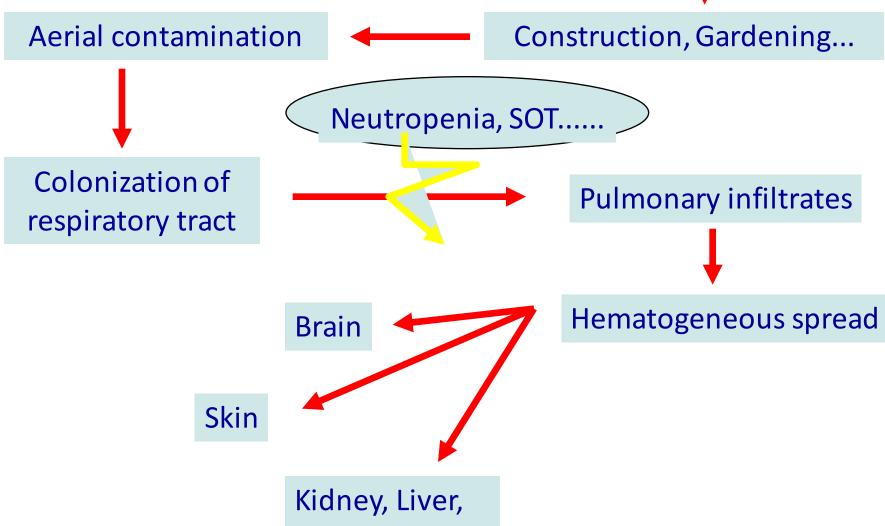
★ Voriconazole: A III


TDM required

Baden Transplantation 2003

Scedosporium spp.

- Isolated from soil, polluted water or sewage
- Comprises two species: S. prolificans and
- S. apiospermum [Pseudallescheria boydii (ar apiospermum)]
 - Clinical features are extremely variable
 - Clinical forms and outcome strictly relate to immune status


370 cases of *Scedosporium* spp. in Texas 2000-2007

S. prolificans Pathogenesis

Soil organism

Spleen,

S.prolificans vs apiospermum

	S.PROLIFICANS	S.APIOSPERMUM
EPIDEMIOLOGY	Rare Spain and Australia	More frequent Worldwide
1st CASE REPORTED	1984: osteomyelitis	1898: Madura foot
RISK FACTORS	Neutropenic > immunocompetent	>> neutropenic pts
CLINICAL FORMS	Mycetoma, eye, osteoarticular, lung, CNS, skin infections	Mycetoma, osteomyelitis, eye, sinus, lung, CNS infections
DIAGNOSIS	Blood cultures frequently positive	Rarely positive
OUTCOME (AMR)	85-100%	65-75%
IN VITRO SUSCEPTIBILITY	Broad spectrum resistance	Voriconazole and posaconazole. Resistance to Amb and echinocandins

Laboratory diagnosis of *Scedosporium* infections

★ Direct microscopy: A III

Non specific. Positive direct microscopy supports growth in culture

★ Histopathology: A III

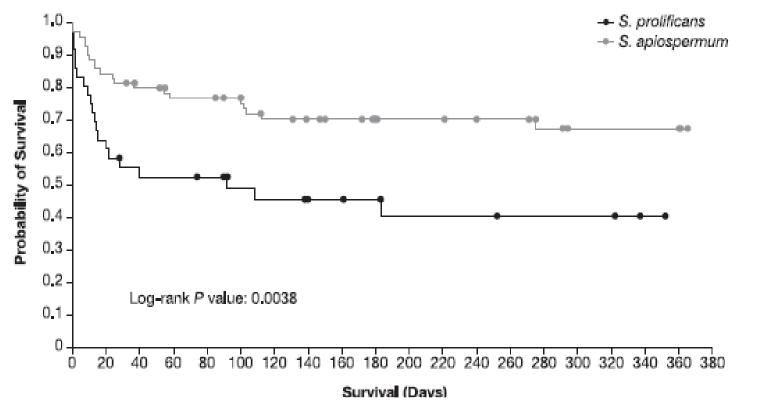
Non specific. Hyaline septate acute angle branching hyphae similar to those of other hyalohyphomycetes

★ In situ hybridization: C III

Reagents not commercially available
Techniques not validated
Low sensitivity for *Pseudallescheria/Scedosporium*

Hayden Diagn Mol Pathol 2003 Montone AmJClinPathol 2009

TABLE 8. Summary of recommendations	for treatment of Scedosporium	spp. infections
-------------------------------------	-------------------------------	-----------------


Population	Intention	SoR	QoE	Comment
Immunocompromised patients	First-line treatment			
•	Voriconazole	Α	llr,t	Therapeutic drug monitoring required Success in 66%
	Itraconazole	D	III	Only one case, failed
	Any combination	С	III	Unclear whether combination is more effective than either drug alone
	Liposomal amphotericin B	С	III	Variable activity
	Amphotericin B deoxycholate	D	III	S. apiospermum may be resistant Excessive toxicity
	Posaconazole	С	III	Only case reports

Voriconazole in scedosporiosis

107 cases of patients treated with voriconazole

Overall Response: 57%

Ranging from **91**% for skin localization to **29**% for uncommon sites (orbite, orecchio, corde vocali)

Troke et al, Antimicrob Agents Chemother 2008;52(5):1743-50.

Treatment of *Scedosporium* infections in pts with cerebral abscess

First line treatment

★ Voriconazole: A III

Good CNS penetration

Surgery if possible

Buzina MM 2006 Chakraborty Jneurosurg 2005 Leechawengwong Mycoses 2007

Second line treatment

★ Combined therapy (Posa+LAmB; Caspo+Vori): C III

Case reports

Treatment of *Scedosporium prolificans* infections

Disseminated or pulmonary in immunocompromised pts

★ Voriconazole: B II

40% survival rate

Husain CID 2005

Nishio KansenshogakuZasshi 2012

Troke AAC 2008

Pulmonary infection in immunocompromised pts

★ Vori/Posa+Terb: B III	50% (3/6) survival	Case reports
★ Itraconazole: C III	15% (3/12) survival	Case reports
★ Amphotericin B: D III	4% (1/26) survival	Case reports

TABLE 10. Indications for surgical removal of tissue infected with Fusarium and Scedosporium species

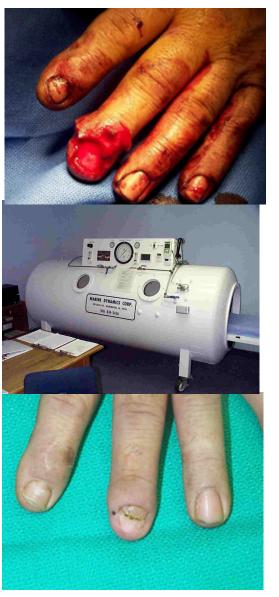
Surgical intervention	SoR	Qoe	References
Haemoptysis from a single cavitary lung lesion (always perform a computerized chest scan to search for other lesions)	Α	III	[2,5,57–59]
Progressive cavitary lung lesion (always perform a computerized chest scan to search for other lesions)	Α	Ш	[2,5,57–59]
Infiltration into the pericardium, great vessels, bone or thoracic soft tissue	Α	Ш	[2,5,57–59]
Osteomyelitis, septic arthritis	Α	llr	[2,46,47,155– 159,257,287]
Resection of infected/colonized tissue before commencing immunosuppressive agents to prevent dissemination in case of cytotoxic therapy	Α	III	[2]

QoE, quality of evidence; SoR, strength of recommendation.

Conclusions

- Difficulties in identifing more uncommon fungal agents
- High rate of unidentified etiologic agents
- Little experiences
- Increasing proportion of high risk patients

Knowledge of epidemiology and susceptibility appear to be crucial to define optimal empirical and/or preemptive antifungal treatments


Good knowledge of armamentarium of antifungals

Hyperbaric Oxygen Therapy

	N° 28
Mean age	31 (0.5-74)
Underlying diseases	
• Diabetes	17
•Trauma	5
•Others	6
Principal site: CNS	21
Post operative	23/25 (92%)
Median sesssion	22 (2-85)
Overall Survival	86%
Better outcome	p= 0.009
24 sessions Vs. 6	
Cut-off 9 sessions	p=0.003

Chamilos & Kontojiannis Clin Microbiol Infect 2005

ECIL-6

EFISG -2014

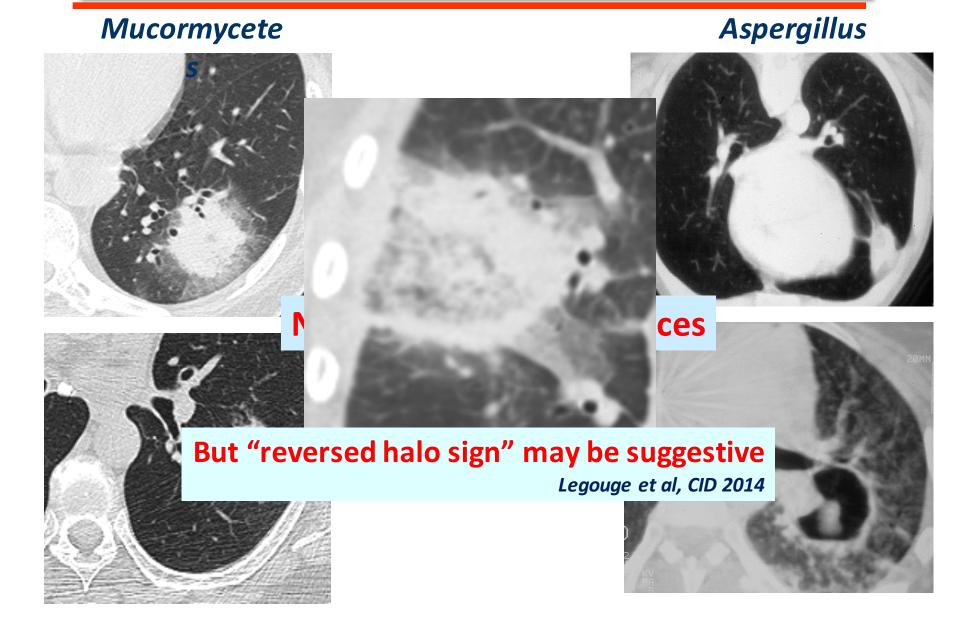
Strength of Recommendations		
Grade	ECIL-5	
Α	Good evidence to support a recommendation for use	
В	Moderate evidence to support a recommendation for use	
С	Poor evidence to support a recommendation for use	

Grade of Recommenda tion	Definition
Grade A	ESCMID (EFISG) and ECMM <u>strongly</u> support a recommendation for use
Grade B	ESCMID (EFISG) and ECMM moderately support a recommendation for use
Grade C	ESCMID (EFISG) and ECMM marginally support a recommendation for use
Grade D	ESCMID (EFISG) and ECMM support a recommendation against use

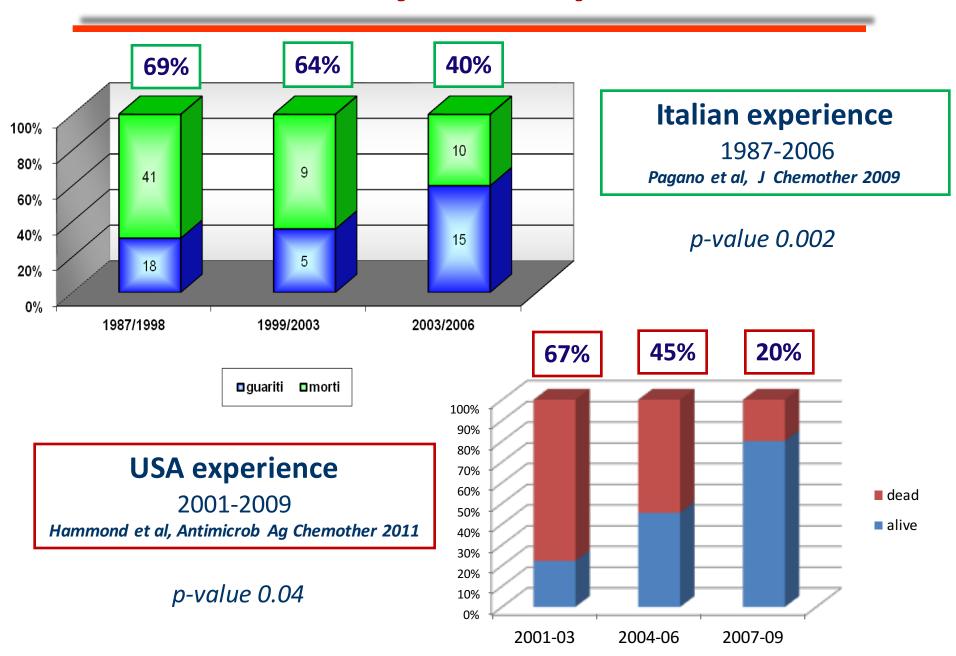
Level of Evidence	Definition
Levell	Evidence from at least 1 properly designed randomized, controlled trial
Level II	Evidence from at least 1 well-designed clinical trial, without randomization; from cohort or case-controlled analytic studies (preferably from >1 centre); from multiple time series; or from dramatic results of uncontrolled experiments
Level III	Evidence from opinions of respected authorities, based on clinical experience, descriptive case studies, or reports of expert committees

	ECIL 6	EFISG
Surgery	AII	A II _U
Control underlying conditions	AII	A II _U
Prophylaxis *Posaconazole *Other azoles *Surgical resection	n.i.	C III D II A III
Timely treatment	n.i.	A II _U

Legend: n.i. = no indication; u= uncontrolled trials


	ECIL 6	EFISG
Front-line Treatment		
⊹L-AmB	BII	*A II _U
*ABLC	BII	B II _U
⊹ABCD	CII	n.i.
	CII	DI
*Posaconazole	C III	B II _U
*Combination	CIII	C III
Salvage		
*Posaconazole	BII	A II _U
⊹L- AmB	n.i.	B II _U
*ABLC	n.i.	B II _U
Combo lipid AmB + Caspo	B III	C III
Combo lipid + Posa	B III	B II _U

Legend: n.i. = no indication; u= uncontrolled trials; * (5 mg/kg)


	ECIL 6	EFISG
G-CSF	n.i.	A II _U
Granulocyte transfusion	n.i.	C II _U
Hyperbaric oxygen	CIII	C II _U
Maintenance *Posaconazole	B III	n.i.
Deferasirox *Hematological *No Hematological	A II (against)	D II C III

Legend: n.i. = no indication; u= uncontrolled trials

Radiological Pictures

Mortality in HM patients

Distribution of clinical presentations

Mucormycosis in Organ and Stem Cell Transplant Recipients Lanternier et al. Clin Infect Dis 2012

Table 1. Studies Reporting >10 Cases of Allogeneic Hematopoietic Stem Cell Transplant (HSCT) Recipients Who Received a Diagnosis of Mucormycosis

Study	Type of Study	No. of Patients/ Study Period	Outcome
Marr, single institution 2002 [23]	Retrospective	29/1985–1999	Median survival: 66 day 1-year survival rate: 20%
Roden, literature review 2005 [4]	Retrospective	44/1940-2003	Mortality rate: 91%
Kontoyiannis, single institution 2005 [24]	Prospective	13/2002–2004	Unreported for specific subpopulations
Trifilio, multicentric case series 2007 [25]	Retrospective	34/2002-2005	Mortality rate: 64%
Chamilos, single institution 2008 [5]	Retrospective	32/1989–2006	Mortality rate: 56%
Bitar, national hospital discharge codes 2009 [7]	Retrospective	33ª/1997-2006	Mortality rate: 36.4%
Neofytos, active surveillance 2009 [26]	Prospective	12/2004–2007	12-week mortality rate: 64.3% ^b
Kontoyiannis, active surveillance 2010 [6]	Prospective	77ª/2001-2006	1-year overall survival rate: 28%
Rüping, passive surveillance 2010 [20]	Prospective	12/2006–2009	Mortality rate: 75%
Skiada, passive surveillance 2011 [1]	Prospective	21/2005–2007	Mortality rate: 76%

Attributable mortality rate is near 70-75%

Safety and Outcomes of Open-Label Deferasirox Iron Chelation Therapy for Mucormycosis[∇]

Brad Spellberg, 1,2* David Andes, Mario Perez, Anne Anglim, Hector Bonilla, Glenn E. Mathisen, Thomas J. Walsh, and Ashraf S. Ibrahim 1,2

patients treated with combination therapy including DFX at the dose of 15-20 mg/Kg

Risk factors	Site of infection	Antifungal agents	outcome
Diabetes SOT	Rhino-orbital-cerebral, lung, sinus, gastric	Lipid-AmB+ posaconazole Lipid-AmB+echinocandin monotherapy	5/8 cured

The Deferasirox-AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study: a randomized, double-blinded, placebo-controlled trial

Brad Spellberg^{1,2*}, Ashraf S. Ibrahim^{2,3}, Peter V. Chin-Hong⁴, Dimitrios P. Kontoyiannis⁵, Michele I. Morris⁶,

John R. Perfect⁷, David Fredricks⁸ and Eric P. Brass^{2,9}

J Antimicrob Chemother
doi:10.1093/jac/dkr375

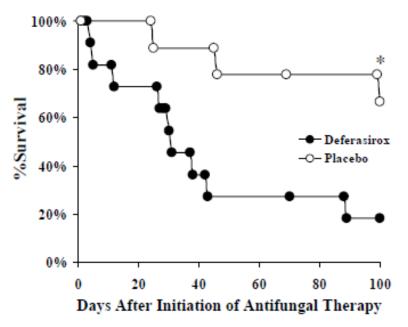


Figure 1. Time to death of patients randomized to deferasirox vs. placebo. All patients were followed through 90 days, with one death in the placebo arm captured on follow up of an SAE at day 100. *p = 0.04.

<u>characteristics</u>	<u>L-AmB+</u> <u>DFX</u>	<u>L-AmB</u> +placebo
No. patients	11	9
Active malignancy	7 (74%)	3 (33%)
Concomitant antifungal Tx	6 (55%)	7 (78%)

11 pts in L-AmB + deferasirox Vs. 9 L-AmB + placebo Better results in diabetic patients

Diagnosis of fusariosis

- ★ Immunohistochemestry: C III
- ★ In situ hybridization: C III

Reagents not commercially available Techniques not validated

Guarner & Brandt CMR 2011
Hayden Diagn Mol Pathol 2003
Montone Am J Clin Pathol 2009

★ β 1,3–D Glucan test & galactomannan: B III

Glucan usually positive, but not specific

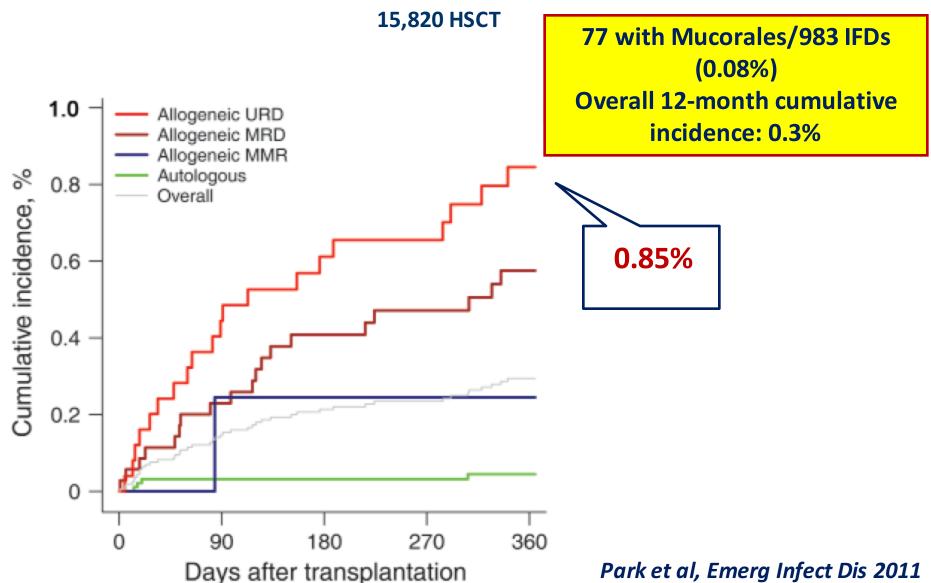
Aspergillus GM sometimes positive in pts with fusariosis,

GM may be useful for follow up

Diagnosis of fusariosis

★ Panfungal PCRs: CII

In house assays
In combination with conventional methods
High negative predictive value


Landlinger EJCMID 2009 Landlinger Leukemia 2010 Lau JCM 2007

★ Multiplex PCRs: CIII

In house assays; not yet validated Limited number of species covered

Lau JCM 2008 Spiess JCM 2007

Invasive Non-Aspergillus Mold Infections in HSCT Recipients, United States, 2001-2006

Adjunctive treatments for *Fusarium* infections

Hematological/neutropenic pts

★ Granulocyte transfusion +/- antifungals: B III

Boutati Blood 1997 Digani Leukemia 1999 Spielberger CID 1993 Helm JAAD 1990

Resolution of infection in pts who recovered of myelosuppression Limited number of pts

Any patient population

★ Surgery: A III

To cure solitary lung nodules

Aggressive debridement of necrotic tissue

★ Catheter removal (+ antifungal): A II

To cure catheter related infection

Velasco EJCMID 1995

Treatment of Scedosporium infections

in immunocompromised pts

★ Voriconazole: A II

66% success rate (lowest in CNS or

disseminated infection)

TDM required

Fortun EJCMID 2003

Heath CMI 2009

Husain CID 2005

Luijk Case RepInfDis 2011 Lamaris CID 2006

Klopfenstein MedPedOnc 2003

🖈 Liposomal AMB: 🕻 III

Scedosporium spp usually resistant to AMB

High dosage required

Heath CMI 2009 Husain CID 2005

★ Conventional AMB: D III

Combined therapy (Vori+LAmB;

Vori+Caspo): C III

Unclear results

Case reports

Treatment of *Scedosporium* infections

★ GM-CSF combined with antifungals

in HSCT recipients: B III

in CGD patients: A II

Antachopoulos Immunother 2012

Bouza CID 1996

RodriguezTudela MM 2009

★ Surgical debridement

of infected bone/soft tissue: B III

Case reports

of pulmonary lesions in

HSCT/SOT recipients: C III

Husain CID 2005

Cystic fibrosis pts:

Laboratory diagnosis of *Scedosporium* infections

★ Culture: A III Growth in 3-4 days

Immunocompromised pts: isolation from respiratory tract, sinuses, soft tissues, blood (mainly S. prolificans)

Cortez CMR 2008

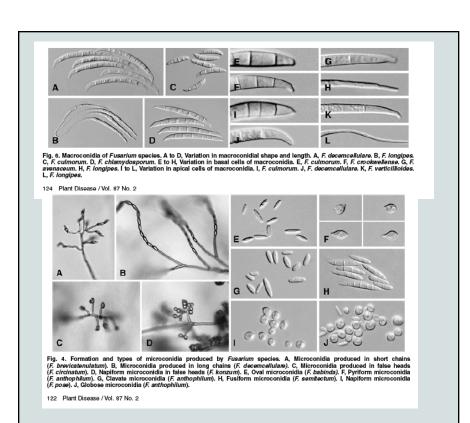
- Near-drowning victims: isolation from aspiration or surgical drainage of brain abscesses (rarely from respiratory tract or csf)
 - repeated isolation from respiratory tract as indicator of colonization selective media supplemented with cycloheximide or benomyl to allow growth of *Scedosporium* over other filamentous fungi disseminated infection in immunosuppressed pts (lung/liver transplant)

Borman MM 2010 Horrè Mycoses 2010 Cimon EJCMID 2000 Summerbell JCM 1993 Rainer AVanLeeu 2008

ABLE 4. Summary of recommendations for diagnosis of Fusarium infection

Fusarium infection/ Population	Test	SoR	QoE	Comment
Any population	Direct microscopy	Α	III	Essential investigation
	Culture (species identification)	Α	III	Essential investigation Easily recovered on routine mycological media without cycloheximide Accurate species assignment is important for guiding clinical management
	Histopathology	Α	llu	Essential investigation Features of hyaline septate hyphae (with acute angle branching) are similar to those seen with aspergillosis
	Immunohistochemistry	С	III	Not yet evaluated
	β-D-Glucan test/ Galactomannan	В	III	Glucan usually positive in case of invasive fusariosis. Aspergillus galactomannan sometimes positive in patients with fusariosis
	Pan-fungal PCRs for identification ^a	С	II	In combination with conventional methods High negative predictive values
	Multiplex PCRs ^a	С	Ш	Not yet validated Cover limited number of species/genera
	In situ hybridization	С	Ш	Not yet evaluated In-house tests
	Susceptibility testing	С	III	Gives an overview of drug activity and may be helpful in selecting antifungals
	Environmental sampling (and fungal typing)	Α	III	In case of an outbreak situation
Haematological patients	Chest computed tomography (CT) scan	Α	llu	None of patients had normal CT Pulmonary nodules in 82% of patients

Identification of Fusarium species


★ Morphology: A III

Identification to genus or species complex level

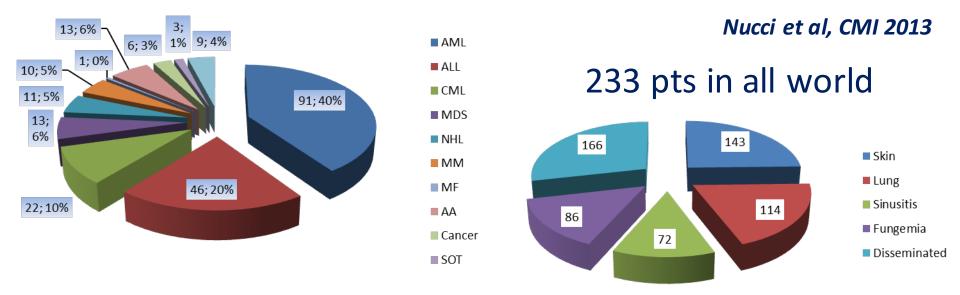


Fig. 2. Colony morphology of Fusarium species on potato dextrose agar. The top plate in each pair is the upper surface and the lower plate is the under surface, A, F, pose, B, F, oxysporum, C, F, acuminatum, D, F, nelsoniii. E, F subgluitinans. F, F, nygamai. G, F pseudonygamai. H, F lateritium, I, F, thapsinum, J, F, decembellulara K, F, verticillioides. L, F, culmorum.

120 Plant Disease / Vol. 87 No. 2

Improvement In The Outcome Of Invasive Fusariosis In The Last Decade

	Unadjusto	ed	Adjusted		
	HR	P-value	HR	P-value	
Hematological disease	5.70 (0.79-41.2)	0.08	5.26 (0.71-38.73)	0.11	
Steroids	2.21 (1.24-3.94)	0.007	2.11 (1.18-3-76)	0.01	
Neutropenia at end of therapy	2.61 (1.52-4.46)	<0.001	2.70 (1.57-4.65)	<0.001	
Disseminated disease	1.72 (0.90-3.26)	0.09	1.45 (0.72-2.94)	0.30	