

Profilassi della riattivazione di HBV

Stefano Fagiuoli

U.S.C. Gastroenterologia ed Epatologia dei Trapianti Ospedale Papa Giovanni XXIII - Bergamo

Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1) (1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.

A 56-year-old Caucasian male with HBV-related cirrhosis was admitted to hospital in July 2004 with high ALT/AST.

- Regularly attending a liver outpatient clinic since 1981 (HBsAg(+), HBeAg(-) anti-Hbe(+), HBV-DNA (-) (??), normal transaminases.
- LFT's remained stable until 1997: "hepatitis flare" (ALT x 10) HBV-DNA (+)
- HCV, HDV, HIV: neg
- June 1997: liver biopsy: Grading 10/18 Staging 6/6 (Ishak modified histology)
- No IFN treatment because of the prompt resolution of the flare with negativization of HBV-DNA by PCR.

Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1)
(1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.

January 2003: Diagnosis of multiple myeloma

- 100 mg a day of lamivudine (prophylaxis against HBV reactivation)
- One month after starting lamivudine, <u>three cycles of chemotherapy</u> with doxorubicin, vincristine and dexamethasone were given, leading to <u>complete remission</u> within six months.
- Then an autologous bone marrow transplantation was performed.

Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1)
(1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.

2003

What to do with LAMIVUDINE????

- 1. STOP (4 months from BMT)
- 2. Continue lifelong
- 3. Stop 6 months after BMT
- 4. Stop 12-18 months after BMT

CLINICAL

Fatal hepatic decompensation in a bone marrow transplant recipient with HBV-related cirrhosis following lamivudine withdrawal

Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1)
(1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.

Lamivudine was continued for a <u>total of one year</u> and was stopped 4 months after the bone marrow transplantation

Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1) (1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.

56-year-old Caucasian male with HBV-related cirrhosis was admitted to hospital in July 2004 with high ALT/AST.

Biochemical tests revealed: **AST 1960** U/L (N < 45), **ALT 1711** U/L (N < 50), **total bilirubin 169.8** μ mol/L, **conjugate bilirubin 130.7** μ mol/L, **PT 59** %

HBeAg (-)

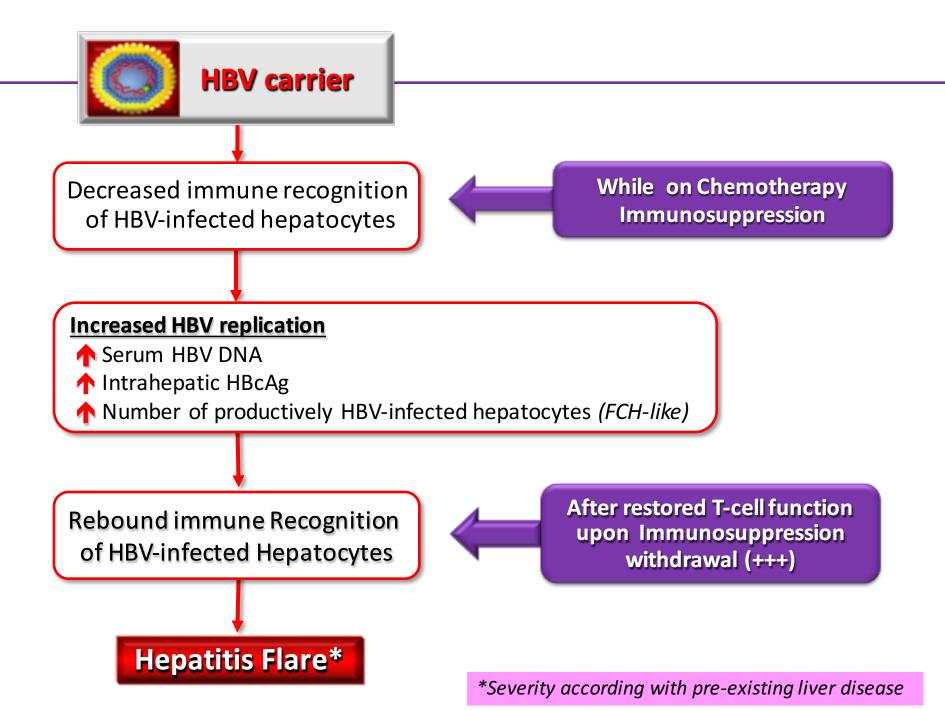
 $HBV-DNA > 10^6 copies/mL$ no YMDD mutants

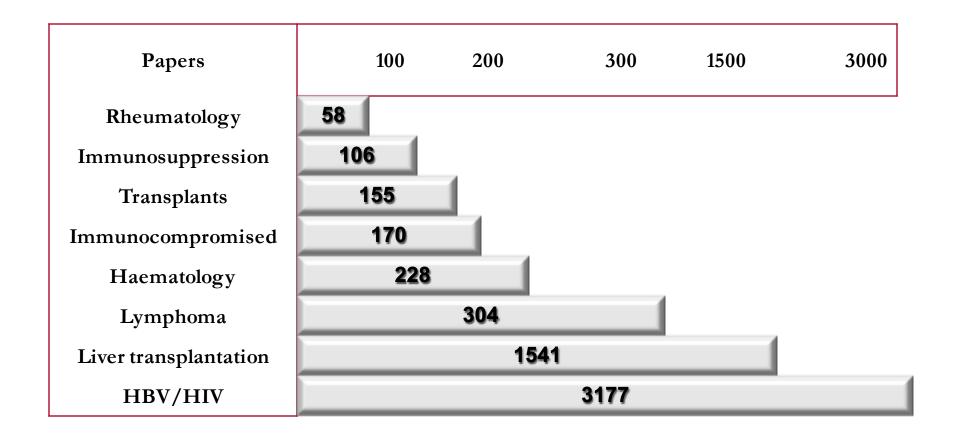
HAV, HDV, HCV, and HIV: neg

Lamivudine 100 mg /day was started

Prophylaxis against viral, fungal, and bacterial infections was also given.

During the next 10 days: AST/ALT peak to 3901 U/L and 2508 U/L in ALT. Total bilirubin rose to 500 µmol/L PT: 37%.


Annarosa FLOREANI (1), Sara BONINSEGNA (1), Salvatore LOBELLO (2), Diego CAROLI (1), Stefano FAGIUOLI (1) (1) Department of Surgical and Gastroenterological Sciences, University of Padova; (2) S. Antonio Hospital, ASL 16, Padova, Italy.


56-year-old Caucasian male with HBV-related cirrhosis was admitted to hospital in July 2004 with high ALT/AST.

On the 15th day in hospital:

- Developed fever (T = 380),
- Chest X-ray revealed bilateral pulmonary interstitial pneumonia,
- The temperature chart suggested a septic clinical picture.

On the 23rd day: Exitus

Speakers: 2008-2011 update

GLI NTO	A I S F)

	Active carrier
HBsAg	+
HBeAg	-/+
antiHBe	-/+
antiHBc	+
antiHBs	-
qHBsAg	≥1000
ALT	Increased (persistent or intermittent)
HBV DNA (IU/mL) serum	> 2000
HBV DNA (IU/mL) liver	+
Liver Stiffness (kPa)	> 6 o ≤ 6^

^{*} In absence of other causes of liver disease; steatosis

In the Mediterranea area about 1/3 of the Inactive Carriers maintains qHBsAg>1000 IU/mL and/or HBV DNA > 2,000/mL (grey zone

[↑] Normal transaminases in immunotollerant HBeAg-positive patients

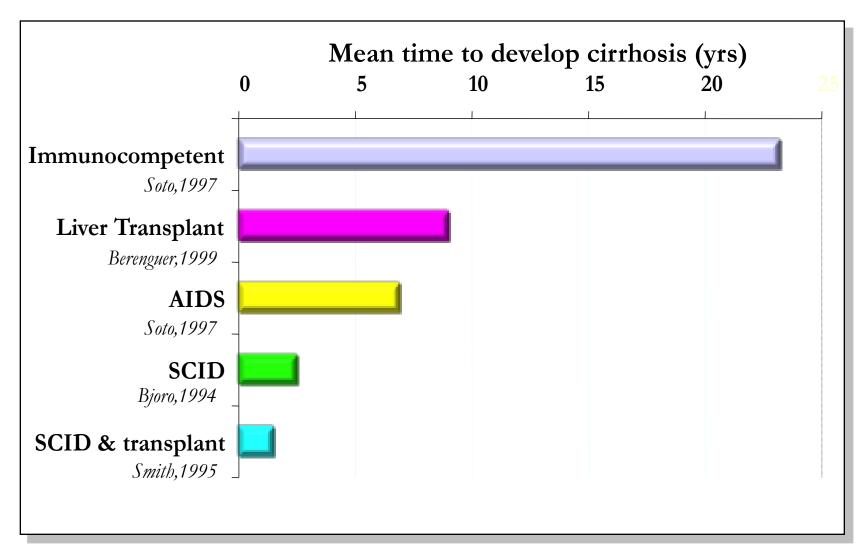
	Active carrier	Inactive carrier
HBsAg	+	+
HBeAg	-/+	-
antiHBe	-/+	+
antiHBc	+	+
antiHBs	-	-
qHBsAg	≥1000	< 1000°°
ALT	Increased (persistent or intermittent)	Normal*
HBV DNA (IU/mL) serum	> 2000	≤ 2000°°
HBV DNA (IU/mL) liver	+	+
Liver Stiffness (kPa)	> 6 o ≤ 6^	< 6*

^{*} In absence of other causes of liver disease; steatosis

oo In the Mediterranea area about 1/3 of the Inactive Carriers maintains qHBsAg>1000 IU/mL and/or HBV DNA > 2,000/mL (grey zone

[↑] Normal transaminases in immunotollerant HBeAg-positive patients

Basal Evaluation in immunocompromised patients – Virological Categories


	Active carrier	Inactive carrier	pOBI (anti-core)
HBsAg	+	+	-
HBeAg	-/+	-	1
antiHBe	-/+	+	+
antiHBc	+	+	+
antiHBs	-	-	±
qHBsAg	≥1000	< 1000°°	-
ALT	Increased (persistent or intermittent)	Normal*	Normal*
HBV DNA (IU/mL) serum	> 2000	≤ 2000°°	-
HBV DNA (IU/mL) liver	+	+	+
Liver Stiffness (kPa)	> 6 o ≤ 6^	< 6*	<6*

^{*} In absence of other causes of liver disease; steatosis

oo In the Mediterranea area about 1/3 of the Inactive Carriers maintains qHBsAg>1000 IU/mL and/or HBV DNA > 2,000/mL (grey zone

[↑] Normal transaminases in immunotollerant HBeAg-positive patients

Disease evolution in immunocompromized individuals

The finding of **isolated anti-HBc** can occur for a variety of reasons:

- (1) Anti-HBc may be an indicator of **chronic HBV infection** (HBsAg had decreased to undetectable levels but HBVDNA often remains detectable, more so in the liver than in serum).
- (2) Anti-HBc may be a marker of **immunity** after recovery from a prior infection (anti-HBs had decreased to undetectable levels but anamnestic response can be observed after one dose of HBV vaccine).
- (3) Anti-HBc may be a **false positive** test result particularly in persons from low prevalence areas with no risk factors for HBV infection. (These individuals respond to hepatitis B vaccination similar to persons without any HBV seromarkers)
- (4) Anti-HBc may be the only marker of HBV infection during the **window phase** of acute hepatitis B (*These persons should test positive for anti-HBc IgM*)

Haematology

	HBV			
	HBsAg+		HBs/ anti-H	
	Europe	China	Europe	China
Range	5.5-12.2%	30-40%	20-40%	70-80%
Italy	8.8%(I)- 12.2%(Gr)° 41.7%°			%°
HBV Reactivation^	24-88% (median 50%) 14-50% (HSCT-BMT)			SCT-BMT)
Mortality	20%			
Lymphoma in carriers	OR 2.6 (China)-2.8 (USA) in B-NHL			
		Wang F et al, Cancer 200	7; Ulcickas YM et al, Hepa	tology 2007

Screening, prevention and treatment of viral hepatitis B reactivation in patients with haematological malignancies

Gadi Lalazar, Deborah Rund and Daniel Shouval

2007 Blackwell Publishing Ltd, British Journal of Haematology, 136, 699–712

Table II. Chemotherapeutic and immune modulating agents involved in hepatitis B virus reactivation and their potential for hepatotoxicity*.

Class	Agents associated with HBV reactivation	Potential hepatotoxicity
Alkylators	Cyclophosphamide	VOD, hepatocellular injury
	Ifosfamide	Hepatocellular injury, cholestasis
	Chlorambucil	Hepatocellular injury
	Carboplatin, cisplatin	hepatocellular injury, cholestasis, steatosis, peliosis
Antimetabolites	Cytarabine	VOD, hepatocellular injury
	Fluorouraril	Hepatocellular injury
	Gemcitabine	Hepatocellular injury, cholestasis
	Mercaptopurine	Hepatocellular injury, cholestasis
	Methotrexate	Hepatocellular injury, steatosis, fibrosis, hepatic neoplasn
	Thioguanine	VOD, hepatocellular injury, NRH, peliosis
Antitumor antibiotics	Anthracyclines	Hepatocellular injury, VOD
	Bleomycin	Steatosis
	Mitomycin C	VOD, steatosis
	Actinomycin D	VOD, steatosis
Corticosteroides	Prednisone/dexamethasone etc.	hepatomegaly (rare association)
Immunotherapy	Rituximab (anti-CD20)	Hepatocellular injury
	Alemtuzumab (anti-CD52)	Hepatocellular injury
	Infliximab (anti-TNF)	Hepatocellular injury, steatosis
Plant Alkaloids	Vincristine	VOD, hepatocellular injury
	Vinblastine	Hepatocellular injury
Others	Asparginase	Hepatocellular injury, steatosis
	Procarbazine	VOD
	Docetaxel	Hepatocellular injury
	Etoposide	Hepatocellular injury
	Fludarabine	Hepatocellular injury
	Imatinib Mesylate	Hepatocellular injury, cholestasis
	Interferon alpha	Hepatocellular injury

MONOCLONAL ANTIBODY THERAPY (anti-CD20 e anti-CD52)

The most frequently experienced viral infections were:

- ✓ HBV (39.1%, n=25)
- ✓ CMV (23.4%, n = 15)
- ✓ VZV (9.4%, n = 6)
- ✓ others (28.1%, n = 18)
- HBV reactivation accounted for 39% of the reported cases
- About <u>52% of the rituximab-related HBV reactivation resulted in death as</u> a result of hepatic failure

Immunosuppressive drugs, virological category and risk of HBV reactivation

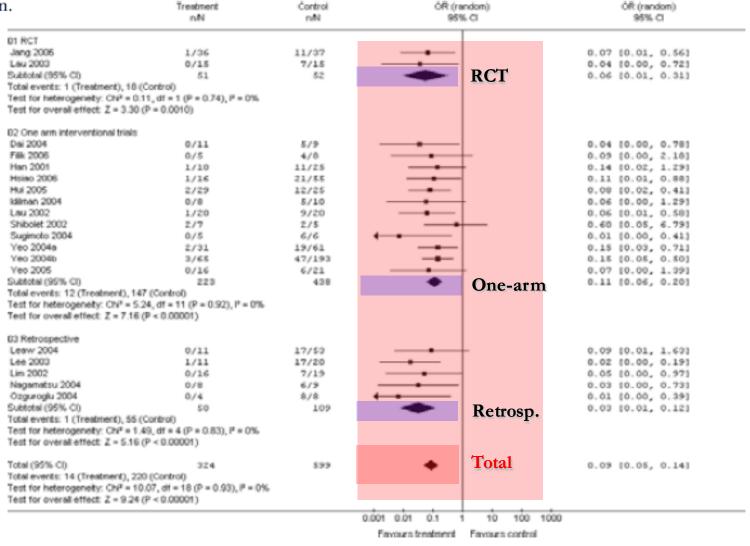
Risk grading	Drugs	HBsAg- positive	рОВІ
	Rituximab, Ofatumumab	Х	Х
High risk (≥ 10%)	Anthracycline, Steroids > 10-20 mg > 4 weeks	х	
(= 10/0)	Anti-TNF	Х	
	Biological	Х	
Medium risk	Steroids < 10 mg > 4 weeks	Х	
(< 10%)	Steroids >10 mg > 4 weeks	Х	Х
Low risk (< 1%)	Traditional immunosuppressants (Azathioprine, Methotrexate, 6 MP), Intra-articular steroids: • Steroids < 1 week, • Steroids < 10 mg > 4 weeks	X	X

Oncology and Haematology

- A Meta-analysis of all studies available on the Web, to estimate the beneficial effect of pre-emptive Lamivudine in HBsAg+ cancer patients undergoing chemotherapy
- 12 trials evaluated, including 2 RCT, mostly in the Orient
- Data on 219 patients treated with pre-emptive lamivudine and 399 controls

1 death prevented every 15 pts treated P<0.0001 35-30 ■ Controls, n=399 25 Lamivudine, n = 21420 15 10 5 **HBV** reactivation **HBV-related HBV-related liver** hepatitis failure & death

LAM therapy:

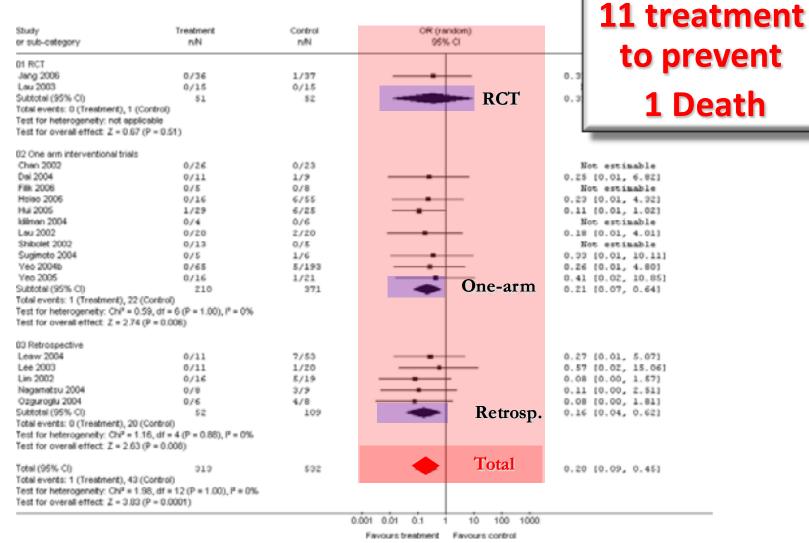

HBV in Oncology and Haematology

Lamivudine prevents reactivation of hepatitis B and reduces mortality in immunosuppressed patients: systematic review and meta-analysis

L. H. Katz, 1,4 A. Fraser, 2 A. Gafter-Gvili, 3,4 L. Leibovici 3,4 and R. Tur-Kaspa 1,4 Department of Medicine

Journal of Viral Hepatitis, 2008, 15, 89-102

Clinical reactivation of hepatitis-B: lamivudine vs placebo or no intervention.


HBV in Oncology and Haematology

Lamivudine prevents reactivation of hepatitis B and reduces mortality in immunosuppressed patients: systematic review and meta-analysis

L. H. Katz, 1,4 A. Fraser, 2 A. Gafter-Gvili, 3,4 L. Leibovici 3,4 and R. Tur-Kaspa 1,4 Department of Medicine

Journal of Viral Hepatitis, 2008, 15, 89-102

HBV-related mortality: lamivudine vs placebo or no intervention.

Changes of Hepatitis B Virus Serologic Status after Allogeneic Hematopoietic Stem Cell Transplantation and Impact of Donor Immunity on Hepatitis B Virus

Silvia Park, Kihyun Kim, Dong Hwan Kim, Jun Ho Jang, Seok Jin Kim, Won Seog Kim, Chul Won Jung, Kwang Cheol Koh²

Reverse Seroconversion (RS) of HBV after ALLOGENEIC Transplantation: Incidence 14 – 86%

Role of:

- Endemic areas
- Criteria for HBV screening
- Adoption of prophylaxis

Changes of Hepatitis B Virus Serologic Status after Allogeneic Hematopoietic Stem Cell Transplantation and Impact of Donor Immunity on Hepatitis B Virus

Silvia Park, 'Kihyun Kim,' Dong Hwan Kim,' Jun Ho Jang,' Seok Jin Kim,'
Won Seog Kim,' Chul Won Jung,' Kwang Cheol Koh²

Reverse Seroconversion (RS) of HBV after ALLOGENEIC Transplantation:

Incidence 14 – 86%

Role of:

- Endemicareas
- Criteria for HBV screening
- Adoption of prophylaxis

Reverse seroconversion (RS) of Hepatitis B virus (HBV) has been reported after allogeneic transplantation with an incidence of 14% to 86%. However, most prior studies on HBV RS were performed in HBV nonendemic areas. In this study, the frequency of HBV RS at a single center in Korea, endemic for HBV, was evaluated. Also, the influence of the donor's immunity for HBV on posttransplantation HBV serologic changes in recipients was also investigated. A total of 288 patients underwent allogeneic transplantation between February I 996 and June 2008. We retrospectively reviewed the medical records of 288 patients and their paired donors. Among the 268 HBsAg($^-$) patients, 205 were assessed for posttransplantation HBsAg, and 114 (55.6%) of 205 had HBcAb before transplantation. With a median follow-up of 77.9 months, 3 of 114 patients experienced HBV RS (2.6%). With regard to donor immunity, significantly more patients with anti-HBs($^-$) donors experienced anti-HBs loss ($^-$ 0.006), and the donor anti-HBs showed significant protective effects against the anti-HBs loss with an HR of 0.4. HBV RS after allogeneic transplantation may not be as common in HBV endemic areas. Also, donor anti-HBs showed a significant favorable effect on maintaining HBV immunity in recipients.

Table I-I. Hepatitis B Markers before HSCT in Recipients

HBsAg	Anti-HBs	Anti-HBc	No. of patients (%)
Negative (n = 268)	Positive (n = 240)	Positive	146 (50.7)
		Negative	85 (29.5)
		Unknown	9 (3.1)
	Negative ($n = 28$)	Positive	2 (0.7)
		Negative	23 (8.0)
		Unknown	3 (1.0)
Positive $(n = 20)$	Negative ($n = 20$)	Positive	18 (6.3)
		Unknown	2 (0.7)

Table 1-2. Hepatitis B Markers before HSCT in Donors

HBsAg	Anti-HBs	Anti-HBc	No. of patients (%)
Negative (n = 249)	Positive (n = 132)	Positive Negative	60 (20.8) 65 (22.6)
		Unknown	7 (2.4)
	Negative ($n = 92$)	Positive	10 (3.5)
		Negative	78 (27.1)
		Unknown	4 (1.4)
	Unknown ($n = 25$)	Unknown	25 (8.7)
Positive $(n = 6)$	Negative $(n = 6)$	Positive	6 (2.1)
		Unknown	0 (0)
Unknown ($n = 33$)	Unknown ($n = 33$)	Unknown	33 (11.5)

Changes of Hepatitis B Virus Serologic Status after Allogeneic Hematopoietic Stem Cell Transplantation and Impact of Donor Immunity on Hepatitis B Virus

Silvia Park, Kihyun Kim, Dong Hwan Kim, Jun Ho Jang, Seok Jin Kim, Won Seog Kim, Chul Won Jung, Kwang Cheol Koh²

288 HSCT

1996-2008

 $lack \Psi$

205

Tested post HSCT

 Ψ

185 anti S e/o anti Core

3 SR (1,6%)

114 anti Core alone

3 SR (2,6%)

Changes of Hepatitis B Virus Serologic Status after Allogeneic Hematopoietic Stem Cell Transplantation and Impact of Donor Immunity on Hepatitis B Virus

Silvia Park, Kihyun Kim, Dong Hwan Kim, Jun Ho Jang, Seok Jin Kim, Won Seog Kim, Chul Won Jung, Kwang Cheol Koh²

- HBV RS after allogeneic transplantation may not be as common in HBV endemic areas.
- Also, <u>donor anti-HBs</u> showed a significant <u>favorable effect</u> on maintaining HBV immunity in recipients.

Changes of Hepatitis B Virus Serologic Status after Allogeneic Hematopoietic Stem Cell Transplantation and Impact of Donor Immunity on Hepatitis B Virus

Silvia Park, Kihyun Kim, Dong Hwan Kim, Jun Ho Jang, Seok Jin Kim, Won Seog Kim, Chul Won Jung, Kwang Cheol Koh²

 Table 6. Rate of HBV RS in Comparison with Other Literatures

References	Rate of HBV RS	Median F/U Period	Nationality
Dhedin et al., Transplantation 1998	20.5% (4 of 37)	20 months	France
Seth et al., Bone Marrow Transplant. 2002	14% (6 of 42)	16 months	Saudi Arabia
Knoll et al., Bone Marrow Transplant. 2004	50% (3 of 6)	30 months	Germany
Onozawa et al., Transplantation 2005	50% (7 of 14)	48 months	Japan .
Knoll et al., J Viral Hepatol. 2007	85.7% (6 of 7)	53 months	Germany
Sarah et al., Blood Marrow Transplant. 2009	19.7% (12 of 61)	17 months	USA

HBV RS indicates hepititis B reverse seroconversion; F/U, follow-up.

..... different **epidemiology** for HBV infection, suggest to us that the **data from nonendemic regions might significantly differ** from the data collected in endemic regions.

In addition, it seems that HBV reactivation after allo-HSCT is a less common complication in HBV endemic areas.

HSCT and HBV: role of vaccination on RS

Trial HSCT in anti Core +

21 vax vs 25 non vax

3-dose Vax:

After discontinuation of immunosuppression

Patient characteristics

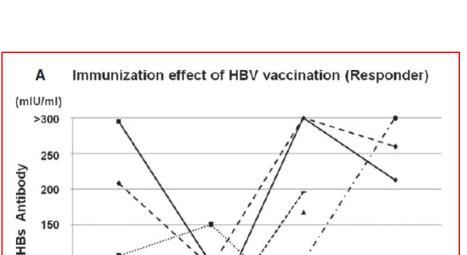
	Non-vaccine group	Vaccine group	<i>P</i> -value
Number	25	21	
Male/Female	13/12	11/10	0.98
Median age, years (range)	38 (22–65)	51 (24–68)	0.02
Median follow-up, months (range)	49 (16–245)	67 (13–102)	0.15
Anti-HBs on pre-HSCT, mIU/mL (range)	112.9 (0.1–986)	20.6 (0.2–295)	0.094
MAC/RIC	20/5	8/13	0.004
Acute GVHD			
Grade 0-I	16	12	0.64
Grade II–IV	9	9	
Chronic GVHD	17	11	0.37
IST ¹	3 ²	2 ³	0.79

Transpl Infect Dis 2014: **16:** 797–801

Hepatitis B virus (HBV) reverse seroconversion (RS) can be prevented even in non-responders to hepatitis B vaccine after allogeneic stem cell transplantation: long-term analysis of intervention in RS with vaccine for patients with previous HBV infection

M. Takahata S. Hashing P. Hashi

M. Takahata¹, S. Hashino², M. Onozawa¹, A. Shigematsu¹, J. Sugita¹, K. Fujimoto¹, T. Endo¹, T. Kondo¹, J. Tanaka³, M. Imamura⁴, T. Teshima¹


Characteristics of vaccine group

	Responder	Non-responder	<i>P</i> -value
Number	9	12	
Age, years (range)	51 (26–54)	51 (25–68)	0.73
Antibody value, IU/m (range)	L		
Pre-HSCT	24.7 (5.6–295)	20.1 (0.2–128)	0.16
Pre vaccine	24.7 (0.2–150)	0.12 (0-12.7)	0.007
2nd line HB vaccine	1	4	0.24
MAC/RIC ¹	5/4	3/9	0.38
aGVHD	7	7	0.35
Grade II–IV	5	4	0.31
cGVHD	4	7	0.43
IST	1	1	0.83
HSCT-Vac (months)	12 (6–39)	17.5 (10–79)	0.52
CD4 (/μL)	274 (94–739)	354 (51–657)	0.45

MAC/RIC: myeloablative/reduced intensity conditioning;

HSCT and HBV: role of vaccination on RS

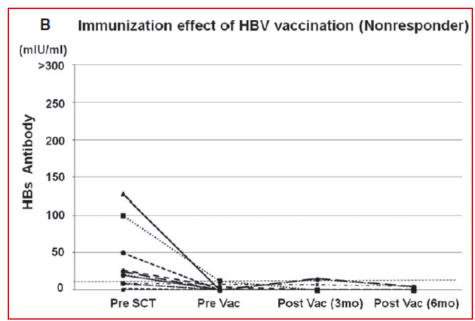
VAX: Effect of vaccination on anti HBs levels

Pre Vac

Post Vac (3mo) Post Vac (6mo)

100

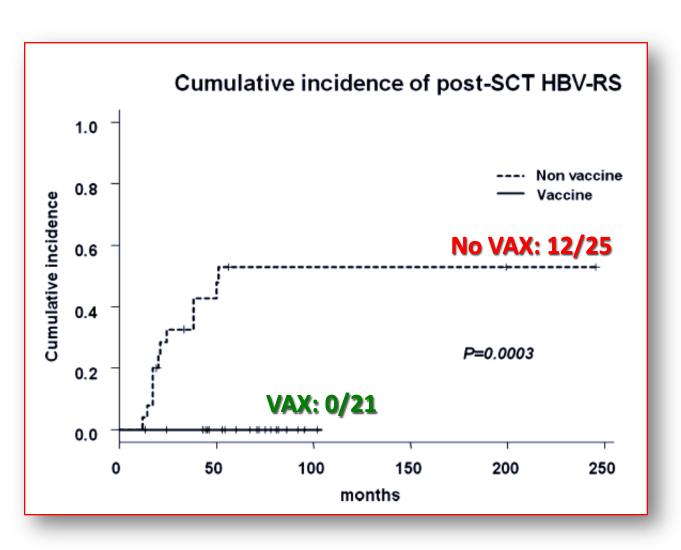
50


Pre SCT

Hepatitis B virus (HBV) reverse seroconversion (RS) can be prevented even in non-responders to hepatitis B vaccine after allogeneic stem cell transplantation: long-term analysis of intervention in RS with vaccine for patients with previous HBV infection

M. Takahata S. Hashino M. Takahata S. Hashino P.

M. Takahata¹, S. Hashino², M. Onozawa¹, A. Shigematsu¹, J. Sugita¹, K. Fujimoto¹, T. Endo¹, T. Kondo¹, J. Tanaka³, M. Imamura⁴, T. Teshima¹



Transpl Infect Dis 2014: **16:** 797–801

Hepatitis B virus (HBV) reverse seroconversion (RS) can be prevented even in non-responders to hepatitis B vaccine after allogeneic stem cell transplantation: long-term analysis of intervention in RS with vaccine for patients with previous HBV infection

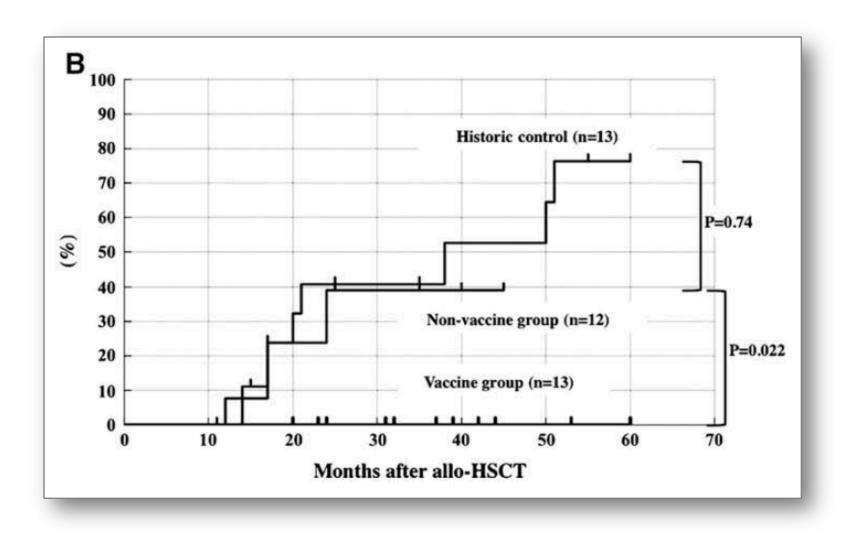
M. Takahata 1. S. Hashino 2.

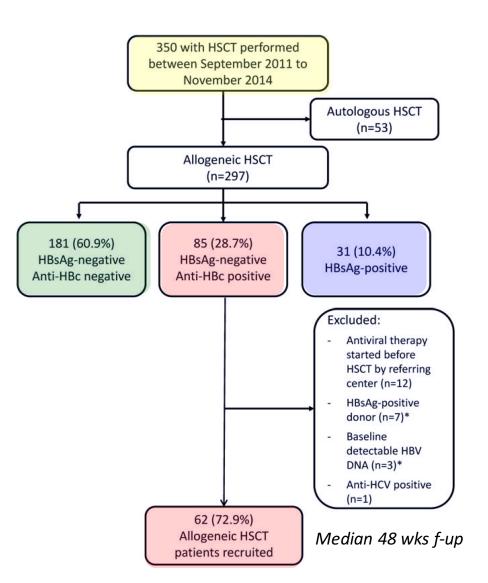
M. Takahata¹, S. Hashino², M. Onozawa¹, A. Shigematsu¹, J. Sugita¹, K. Fujimoto¹, T. Endo¹, T. Kondo¹, J. Tanaka³, M. Imamura⁴, T. Teshima¹

HSCT and HBV: role of vaccination on RS

Transpl Infect Dis 2014: 16: 797-801

Hepatitis B virus (HBV) reverse seroconversion (RS) can be prevented even in non-responders to hepatitis B vaccine after allogeneic stem cell transplantation: long-term analysis of intervention in RS with vaccine for patients with previous HBV infection


M. Takahata S. Hashing P. Hashi


M. Takahata¹, S. Hashino², M. Onozawa¹, A. Shigematsu¹, J. Sugita¹, K. Fujimoto¹, T. Endo¹, T. Kondo¹, J. Tanaka³, M. Imamura⁴, T. Teshima¹

Conclusion. These results demonstrated the long-term effects of HBV vaccine for preventing HBV-RS after alloHSCT. Of note, no HBV-RS occurred, even in patients who did not achieve conversion into HBsAb positivity after vaccination.

HB Vaccination in the Prevention of Viral Reactivation in Allogeneic Hematopoietic Stem Cell Transplantation Recipients with Previous HBV Infection

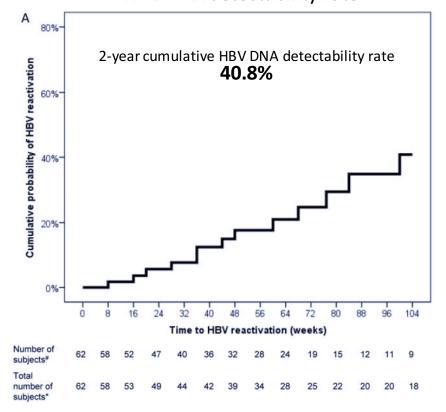
Masahiro Onozawa, ^¹ Satoshi Hashino, ^¹ Stephanie Darmanin, ^¹ Kohei Okada, ^¹ Rena Morita, ^¹ Mutsumi Takahata, ^¹ Akio Shigematsu, ^² Kaoru Kahata, ^¹ Takeshi Kondo, ^¹ Junji Tanaka, ^² Masahiro Imamura, ^² Masahiro Asaka ^¹

HEPATOLOGY VOL. 65, NO. 5, 2017

Hepatitis B Reactivation in Occult Viral Carriers Undergoing Hematopoietic Stem Cell Transplantation:

A Prospective Study

Wai-Kay Seto, ^{1,2} Thomas Sau-Yan Chan, ¹ Yu-Yan Hwang, ¹ Danny Ka-Ho Wong, ^{1,2} James Fung, ^{1,2} Kevin Sze-Hang Liu, ¹ Harinder Gill, ¹ Yuk-Fai Lam, ¹ Eric H.Y. Lau, ³ Ka-Shing Cheung, ¹ Albert K.W. Lie, ¹ Ching-Lung Lai, ^{1,2} Yok-Lam Kwong, ¹ and Man-Fung Yuen ^{1,2}

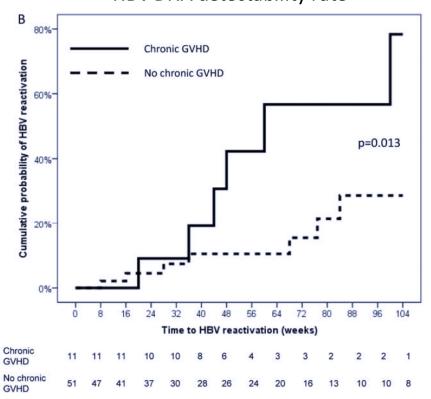

Primary endpoint:

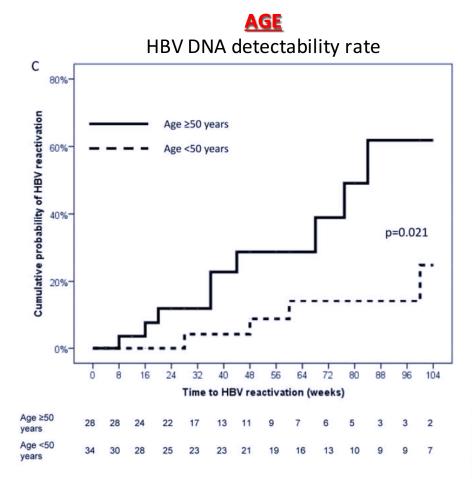
• HBV reactivation (detectable HBV-DNA (10 IU/mL))

Secondary endpoints

- Overall survival,
- HBsAg positivity,
- Changes in liver biochemistry and antiHBs levels

OVERALLHBV DNA detectability rate


HEPATOLOGY VOL. 65, NO. 5, 2017

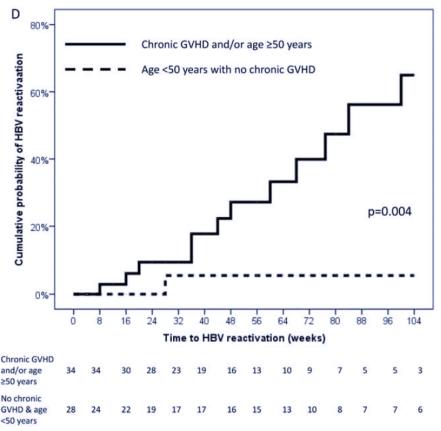

Hepatitis B Reactivation in Occult Viral Carriers Undergoing Hematopoietic Stem Cell Transplantation:

A Prospective Study

Wai-Kay Seto,^{1,2} Thomas Sau-Yan Chan,¹ Yu-Yan Hwang,¹ Danny Ka-Ho Wong,^{1,2} James Fung,^{1,2} Kevin Sze-Hang Liu,¹ Harinder Gill,¹ Yuk-Fai Lam,¹ Eric H.Y. Lau,³ Ka-Shing Cheung,¹ Albert K.W. Lie,¹ Ching-Lung Lai,^{1,2} Yok-Lam Kwong,¹ and Man-Fung Yuen^{1,2}

Chronic GVHDHBV DNA detectability rate

HEPATOLOGY VOL. 65, NO. 5, 2017


Hepatitis B Reactivation in Occult Viral Carriers Undergoing Hematopoietic Stem Cell Transplantation:

A Prospective Study

Wai-Kay Seto,^{1,2} Thomas Sau-Yan Chan,¹ Yu-Yan Hwang,¹ Danny Ka-Ho Wong,^{1,2} James Fung,^{1,2} Kevin Sze-Hang Liu,¹ Harinder Gill,¹ Yuk-Fai Lam,¹ Eric H.Y. Lau,³ Ka-Shing Cheung,¹ Albert K.W. Lie,¹ Ching-Lung Lai,^{1,2} Yok-Lam Kwong,¹ and Man-Fung Yuen^{1,2}

Chronic GVHD & AGE

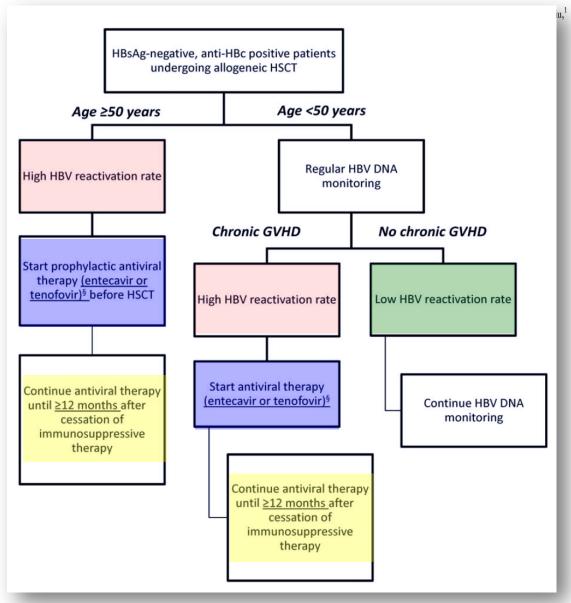
HBV DNA detectability rate

NOT associated with reactivation

- Baseline antiHBs ststus
- Serial changes in anti HBs levels
- Donor serology

Age <50 yrs & No Chronic GVHD

Lower 2-yr HBV reactivation rate (5.6% versus 65.0%, P 5 0.004).


Entecavir successfully suppressed HBV DNA to undetectable levels,

NO cases developing biochemical hepatitis.

HEPATOLOGY VOL. 65, NO. 5, 2017

Hepatitis B Reactivation in Occult Viral Carriers Undergoing Hematopoietic Stem Cell Transplantation:

A Prospective Study

Clin Microbiol Infect 2014; 20: O694-O701

Hepatitis B reactivation in HBsAg-negative/HBcAb-positive allogeneic haematopoietic stem cell transplant recipients: risk factors and outcome

M. Mikulska^{1,2}, L. Nicolini¹, A. Signori², G. Rivoli¹, V. Del Bono¹, A. M. Raiola³, C. Di Grazia³, A. Dominietto³, R. Varaldo³, A. Ghiso³, A. Bacigalupo³ and C. Viscoli^{1,2}

764 HSCT

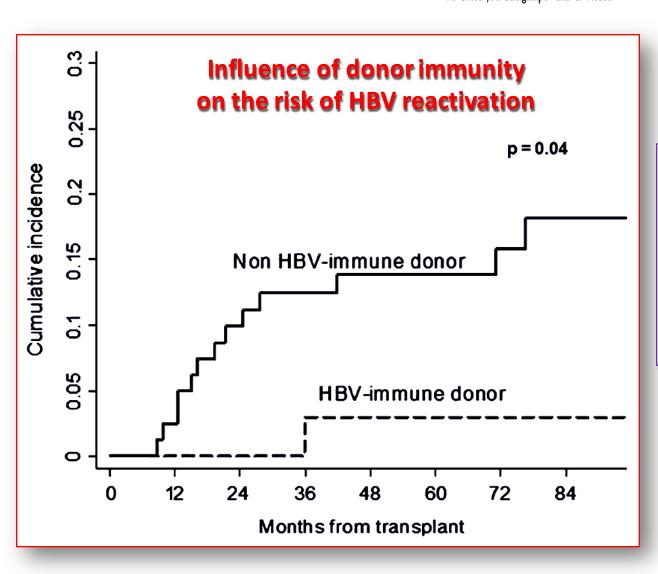
↓

137 (18%)

HBsAg(-) / anti Core(+) pre tx

↓

14 (10%)


HBV reactivation [median 19 m (9-77)]

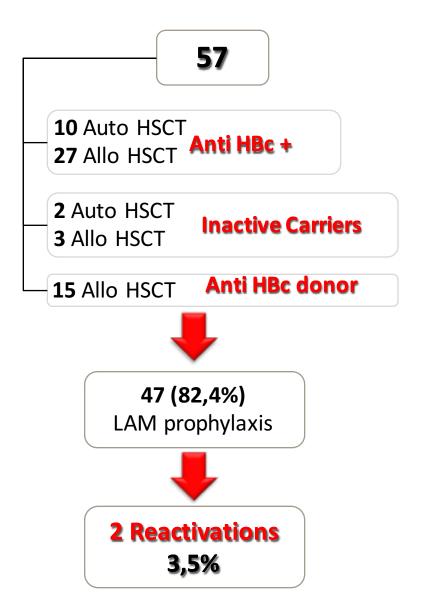
No difference between antiHBc(+) and anti HBc(-) in:

- Survival
- NRM
- GVHD

Hepatitis B reactivation in HBsAg-negative/HBcAb-positive allogeneic haematopoietic stem cell transplant recipients: risk factors and outcome

M. Mikulska^{1,2}, L. Nicolini¹, A. Signori², G. Rivoli¹, V. Del Bono¹, A. M. Raiola³, C. Di Grazia³, A. Dominietto³, R. Varaldo³, A. Ghiso³, A. Bacigalupo³ and C. Viscoli^{1,2}

Cause-specific hazard for reactivation


- <u>Rituximab</u> treatment (HR adjusted = 2.91; p 0.11).
- **Length** of treatment with cyclosporine (p < 0.001)

Hepatitis B reactivation in HBsAg-negative/HBcAb-positive allogeneic haematopoietic stem cell transplant recipients: risk factors and outcome

M. Mikulska^{1,2}, L. Nicolini¹, A. Signori², G. Rivoli¹, V. Del Bono¹, A. M. Raiola³, C. Di Grazia³, A. Dominietto³, R. Varaldo³, A. Ghiso³, A. Bacigalupo³ and C. Viscoli^{1,2}

- No differences in <u>overall survival</u> and NRM were found between patients with and without <u>HBV reactivation</u>.
- <u>Donor's immunity</u> was independently and consistently associated with a <u>decreased risk of HBV reactivation</u>,
- Rituximab and cyclosporine treatments increased the probability.

HBV and **HSCT**

Clinical Microbiology and Infection 22 (2016) 946.e1-946.e8

Persistent risk of HBV reactivation despite extensive lamivudine prophylaxis in haematopoietic stem cell transplant recipients who are anti-HBc-positive or HBV-negative recipients with an anti-HBc-positive donor

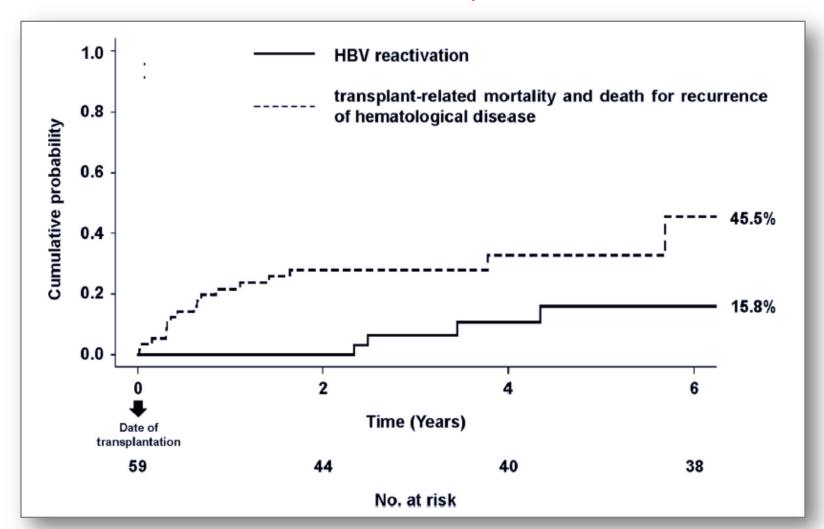
C. Cerva ^{1, 4}, L. Colagrossi ^{2, 4}, G. Maffongelli ¹, R. Salpini ², D. Di Carlo ², V. Malagnino ¹, A. Battisti ², A. Ricciardi ¹, M. Pollicita ², A. Bianchi ¹, A. Picardi ³, L. Cudillo ³, R. Cerretti ³, G. De Angelis ³, M. Cantonetti ³, M. Andreoni ¹, C.F. Perno ², W. Arcese ³, V. Svicher ^{2, 4}, L. Sarmati ^{1, 2, 4}

320

Anti HBc -

Auto HSCT

NOLAM prophylaxis



2 Reactivations 0,6%

Persistent risk of HBV reactivation despite extensive lamivudine prophylaxis in haematopoietic stem cell transplant recipients who are anti-HBc-positive or HBV-negative recipients with an anti-HBc-positive donor

C. Cerva ^{1, 4}, L. Colagrossi ^{2, 4}, G. Maffongelli ¹, R. Salpini ², D. Di Carlo ², V. Malagnino ¹, A. Battisti ², A. Ricciardi ¹, M. Pollicita ², A. Bianchi ¹, A. Picardi ³, L. Cudillo ³, R. Cerretti ³, G. De Angelis ³, M. Cantonetti ³, M. Andreoni ¹, C.F. Perno ², W. Arcese ³, V. Svicher ^{2, 4}, L. Sarmati ^{1, *, 4}

Cumulative Probability of events

Clinical Microbiology and Infection 22 (2016) 946.e1-946.e8

Persistent risk of HBV reactivation despite extensive lamivudine prophylaxis in haematopoietic stem cell transplant recipients who are anti-HBc-positive or HBV-negative recipients with an anti-HBc-positive donor

C. Cerva ^{1, 4}, L. Colagrossi ^{2, 4}, G. Maffongelli ¹, R. Salpini ², D. Di Carlo ², V. Malagnino ¹, ¹ A. Battisti ², A. Ricciardi ¹, M. Pollicita ², A. Bianchi ¹, A. Picardi ³, L. Cudillo ³, R. Cerretti ³, G. De Angelis ³, M. Cantonetti ³, M. Andreoni ¹, C.F. Perno ², W. Arcese ³, V. Svicher ^{2, 4}, L. Sarmati ^{1, 2, 4}

Features of the 4 HBV reactivating pts

ID_Patient	1	2	3	4
Clinical characteristics				
HBV serological status ^a	Anti-HBc and anti-HBs positive	Negative	Negative ^a	Negative
N of HSCT before HBV-R	2	1	2	1
HSCT type	Autologous/allogeneic	Allogeneic	Autologous/allogeneic	Autologous
Donor's HBV serological status ^{a,b}	NA/anti-HBc and anti-HBs positive	Anti-HBc alone	NA/negative	NA
Months from disease diagnosis to HBV-R	71	36	39	62
Months from first HSCT to HBV-R	41	30	12	52
Outcome	_	Dead	Dead	_
GvHD concomitant	Yes	No	Yes	_
LMV prophylaxis	Yes (41 months)	No	No	No
Virological characteristics				
Genotype	D	D	D	F
HBV-DNA Log (IU/mL)	5.97	3.24	5.08	8.94
ALT (U/L)	31	2159	361	61
AST (U/L)	29	2570	203	31
HBsAg quantitative (IU/mL)	>52 000	Negative	4029	>52 000
HBsAg mutations associated with immune escape	None	V96A/V, M103I, T123N, C124Y, T126I, G145 K/R	D144E	R122K, T140S
RT mutations associated with drug resistance	L80I	A181S, V214A	None	None

Clinical Microbiology and Infection 22 (2016) 946.e1-946.e8

Persistent risk of HBV reactivation despite extensive lamivudine prophylaxis in haematopoietic stem cell transplant recipients who are anti-HBc-positive or HBV-negative recipients with an anti-HBcpositive donor

C. Cerva ^{1, 4}, L. Colagrossi ^{2, 4}, G. Maffongelli ¹, R. Salpini ², D. Di Carlo ², V. Malagnino ¹, A. Battisti ², A. Ricciardi ¹, M. Pollicita ², A. Bianchi ¹, A. Picardi ³, L. Cudillo ³, R. Cerretti ³, G. De Angelis ³, M. Cantonetti ³, M. Andreoni ¹, C.F. Perno ², W. Arcese ³, V. Svicher ^{2, 4}, L. Sarmati ^{1, *, 4}

In a HSCT population carefully evaluated for HBV prophylaxis, a risk of HBV reactivation persisted in the group of patients who were **not LMV treated**.

E B NEGLI NAMENTO

Management strategies according with virological profile

	Active carrier
HBsAg	+
HBV DNA (IU/ml)	> 2000
LS (KPa)	> 6 o < 6^
Reactivation risk > 10%	+++
Drug treatment	ETV or TDF (TAF)
Duration of treatment	Indefinite

^{*} in the absence of other causes of liver disease;

[^] immunotolerant;

^{°°} after discontinuation of immunosuppressant and regression/control of underlying disease:

[§] anti-CD 20 used in onco-haematological disease.

^{**} If a quarterly virologic monitoring cannot be guaranteed during prophylaxis;

Management strategies according with virological profile

	Active carrier	Inactive carrier
HBsAg	+	+
HBV DNA (IU/ml)	> 2000	Positive (≤2000)
LS (KPa)	> 6 o < 6^	<6*
Reactivation risk > 10%	+++	++
Drug treatment	ETV or TDF (TAF)	ETV
Duration of treatment	Indefinite	Prophylaxis for at least 12 months

^{*} in the absence of other causes of liver disease;

[^] immunotolerant;

^{°°} after discontinuation of immunosuppressant and regression/control of underlying disease:

[§] anti-CD 20 used in onco-haematological disease.

^{**} If a quarterly virologic monitoring cannot be guaranteed during prophylaxis;

Management strategies according with virological profile

	Active carrier	Inactive carrier	Inactive Carrier
HBsAg	+	+	+
HBV DNA (IU/ml)	> 2000	Positive (≤2000)	Negative (Undetectable)
LS (KPa)	> 6 o < 6^	<6*	< 6*
Reactivation risk > 10%	+++	++	+
Drug treatment	ETV or TDF (TAF)	ETV	LAM (HBV DNA monitoring) or ETV**
Duration of treatment	Indefinite	Prophylaxis for at least 12 months	Prophylaxis for at least 12 months

^{*} in the absence of other causes of liver disease;

[^] immunotolerant;

^{°°} after discontinuation of immunosuppressant and regression/control of underlying disease:

[§] anti-CD 20 used in onco-haematological disease.

^{**} If a quarterly virologic monitoring cannot be guaranteed during prophylaxis;

TO A I

Management strategies according with virological profile

	Active carrier	Inactive carrier	Inactive Carrier	pOBI (anti-core)
HBsAg	+	+	+	-
HBV DNA (IU/ml)	> 2000	Positive (≤2000)	Negative (Undetectable)	Negative/detectable (≤200)
LS (KPa)	> 6 o < 6^	<6*	< 6*	<6*
Reactivation risk > 10%	+++	++	+	+ § / -
Drug treatment	ETV or TDF (TAF)	ETV	LAM (HBV DNA monitoring) or ETV**	LAM (HBsAg monitoring)
Duration of treatment	Indefinite	Prophylaxis for at least 12 months	Prophylaxis for at least 12 months	Prophylaxis for at least 18 months

^{*} in the absence of other causes of liver disease;

[^] immunotolerant;

^{°°} after discontinuation of immunosuppressant and regression/control of underlying disease:

[§] anti-CD 20 used in onco-haematological disease.

^{**} If a quarterly virologic monitoring cannot be guaranteed during prophylaxis;

Auto-HSCT

Virological profile:

- Antiviral Therapy in AC
- Prophylaxis in pOBI

Anti HBV Vaccination

Recipients:

Whenever possible!!

Donor:

Strongly Advised

Allo-HSCT

HBV in Donor IS NOT a contraindication

HBsAg + DONOR

Assess for AT

HBsAg + Recipient

According to virological profile

pOBI Recipient / HBsAg- Donor

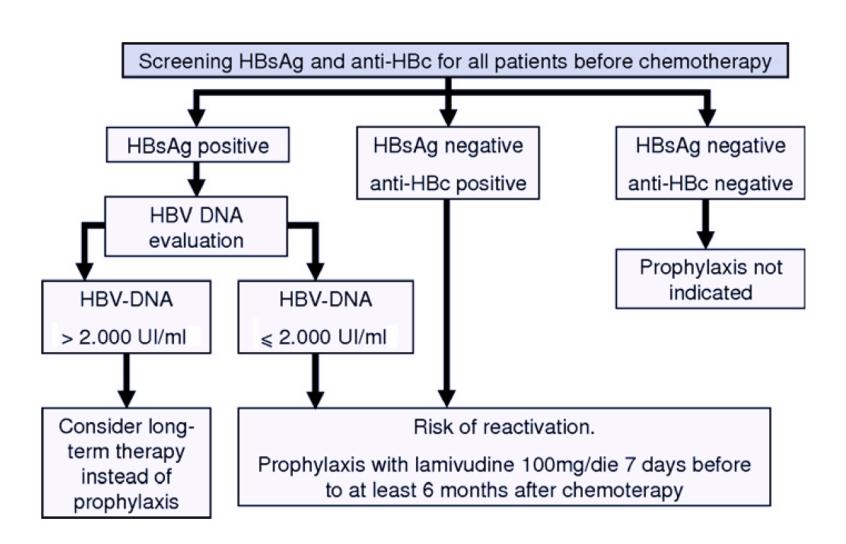
LAM for 18 m after*

Swithch to ETV/TDF if long IS

Naive Recipient / pOBI Donor

Pre-emptive strategy

Naive Recipient / Naive Donor


Monitor ALT

The benefit of a good choice lasts forever.....

HBV disease: HBsAg carrier and occult B infection reactivation in haematological setting

Carlo Marinone*, Monica Mestriner

General statements in allogenic HSCT

- 1. Vaccination of the recipients (BIII) and donors (AV) not immunized with accelerated protocols
- 2. Treatment of HBsAg+ donors with lamivudine and universal prophylaxis of recipients (AIV)
- 3. Preferential allocation of anti-HBc+ positive organs to vaccinated recipients or those with markers of prior contact with HBV (BV)
- 4. HBIG during infusion of HSCT in HBsAg- recipients of HBsAg+ donors (CVI)

The panel agrees that because of the actual results of the hepatologic and haematologic therapy there is no reason to deny a HSCT from a HBV positive donor (any form) if the risk-benefit ratio is in favour of transplantation. Moreover in the case of a HLA identical family HBV positive member there is no point in wasting time and resources in searching for an unrelated donor in the international bone marrow donor bank.

HBV disease: HBsAg carrier and occult B infection reactivation in haematological setting

Carlo Marinone*, Monica Mestriner

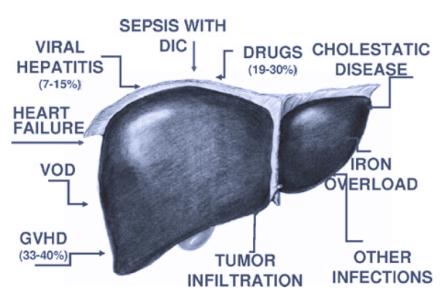
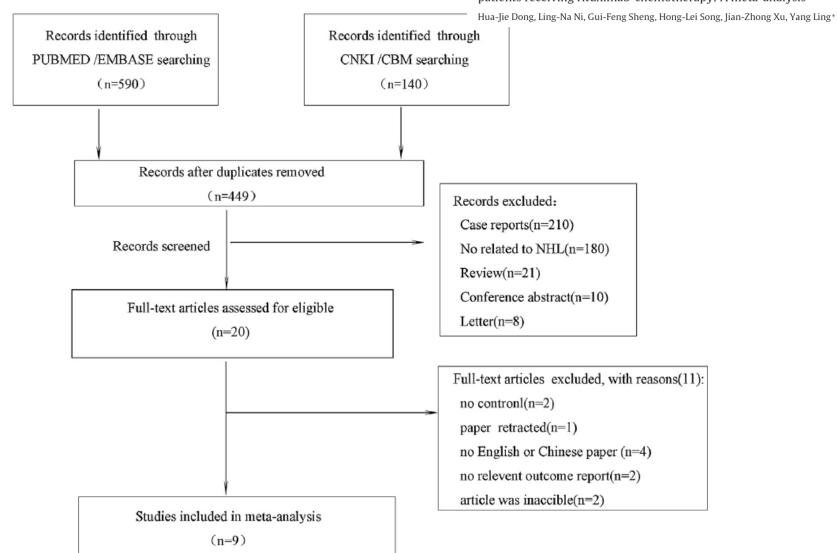


Fig. 1. Liver complication after stem cell transplantation/immuno-chemotherapy. DIC: disseminated intravascular coagulation; VOD: veno-occlusive disease; GVHD: graft vs. host disease.

Contents lists available at SciVerse ScienceDirect


Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Contents lists available at SciVerse ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Hua-Jie Dong, Ling-Na Ni, Gui-Feng Sheng, Hong-Lei Song, Jian-Zhong Xu, Yang Ling*

Forest plot showing the prevalence of HBV reactivation in HBsAg(+) and HBcAb(+) patients with non-Hodgkin lymphoma (NHL): rituximab based therapy versus non-rituximab controls

a		Rituximab-tre	eated	No rituxi	mab		Risk Ratio	Risk Ratio
٠.	Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% CI	M-H. Fixed. 95% Cl
	Yeo et al.2009 [4]	5	21	0	25	1.9%	13.00 [0.76, 222.25]	+
	Fukushima et al.2009 [9]	2	32	0	16	2.7%	2.58 [0.13, 50.68]	-
	Hui et al.2006 [10]	7	88	1	145	3.1%	11.53 [1.44, 92.18]	
	Ji et al.2010 [11]	1	43	0	45	2.0%	3.14 [0.13, 74.95]	-
	Koo et al.2010 [12]	1	46	0	21	2.8%	1.40 [0.06, 33.11]	-
	Luo et al.2010 [13]	12	18	7	24	24.7%	2.29 [1.13, 4.62]	
	Targhetta et al.2008 [14]	2	74	2	245	3.8%	3.31 [0.47, 23.10]	
	Tsutsumi et al.2009 [15]	4	25	0	22	2.2%	7.96 [0.45, 140.05]	
	Wang et al.2008 [16]	12	40	14	41	56.8%	0.88 [0.47, 1.66]	
	Total (95% CI)		387		584	100.0%	2.14 [1.42, 3.22]	◆
	Total events	46		24				
	Heterogeneity: Chi ² = 12.76	f, $df = 8 (P = 0.1)$	12); 12 =	37%			4	0.01 0.1 1 10 100
	Test for overall effect: Z = 3	3.64 (P = 0.0003	3)				Fa	vours Rituxiamb-treated Favours control

Journal of Clinical Virology

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Hua-Jie Dong, Ling-Na Ni, Gui-Feng Sheng, Hong-Lei Song, Jian-Zhong Xu, Yang Ling*

Forest plot showing the prevalence of HBV reactivation in HBsAg(-) and HBcAb(+) patients with non-Hodgkin lymphoma (NHL): rituximab based therapy versus non-rituximab controls

b		Rituximab-tre	eated	No rituxi	mab		Risk Ratio	Risk Ratio
~	Study or Subgroup	Events	Total	Events	Total	Weight	M-H.Fixed.95% Cl	M-H. Fixed. 95% CI
	Yeo et al.2009 [4]	5	21	0	25	11.5%	13.00 [0.76, 222.25]	
	Fukushima et al.2009 [9]	2	32	0	16	16.6%	2.58 [0.13, 50.68]	
	Hui et al.2006 [10]	7	88	1	145	19.0%	11.53 [1.44, 92.18]	
	Ji et al.2010 [11]	1	43	0	45	12.3%	3.14 [0.13, 74.95]	-
	Koo et al.2010 [12]	1	46	0	21	17.2%	1.40 [0.06, 33.11]	-
	Targhetta et al.2008 [14]	2	74	2	245	23.4%	3.31 [0.47, 23.10]	
	Total (95% CI)		304		497	100.0%	5.52 [2.05, 14.85]	-
	Total events	18		3				
	Heterogeneity: Chi ² = 2.19,	df = 5 (P = 0.82)	$(2); l^2 = 0$	%				
	Test for overall effect: Z = 3	3.39 (P = 0.0007	")				Fav	0.01 0.1 1 10 100 vours Rituximab-treated Favours control

Contents lists available at SciVerse ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Hua-Jie Dong, Ling-Na Ni, Gui-Feng Sheng, Hong-Lei Song, Jian-Zhong Xu, Yang Ling*

Forest plot showing the prevalence of HBV reactivation in <u>HBsAg(+)</u> patients with non-Hodgkin lymphoma (NHL): <u>rituximab based therapy versus non-rituximab controls</u>

c		Rituximab-tre	eated	No rituxi	mab		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
	Luo et al.2010 [13]	12	18	7	24	44.5%	2.29 [1.13, 4.62]	
	Tsutsumi et al.2009 [15]	4	25	0	22	8.8%	7.96 [0.45, 140.05]	
	Wang et al.2008 [16]	12	40	14	41	46.7%	0.88 [0.47, 1.66]	-
	Total (95% CI)		83		87	100.0%	1.63 [0.65, 4.09]	-
	Total events	28		21				
	Heterogeneity: Tau ² = 0.37	; $Chi^2 = 5.37$, o	if = 2 (P	= 0.07); l ²	= 63%			0.01 0.1 1 10 100
	Test for overall effect: Z =	1.04 (P = 0.30)					Fav	ours Rituximab-treated Favours Control

Contents lists available at SciVerse ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Hua-Jie Dong, Ling-Na Ni, Gui-Feng Sheng, Hong-Lei Song, Jian-Zhong Xu, Yang Ling*

Forest plot showing the prevalence of HBV reactivation in HBsAg(+) and HBcAb(+) patients with non-Hodgkin lymphoma (NHL): rituximab based therapy versus non-rituximab controls (after adjustment for heterogeneity).

	Rituximab-tr	eated	No rituxi	mab		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI		M-H. Fixe	d, 95% CI	
Yeo et al.2009 [4]	5	21	0	25	4.4%	13.00 [0.76, 222.25]		-	•	\longrightarrow
Fukushima et al.2009 [9]	2	32	0	16	6.3%	2.58 [0.13, 50.68]			•	_
Hui et al.2006 [10]	7	88	1	145	7.2%	11.53 [1.44, 92.18]				
Ji et al.2010 [11]	1	43	0	45	4.7%	3.14 [0.13, 74.95]			•	
Koo et al.2010 [12]	1	46	0	21	6.5%	1.40 [0.06, 33.11]			•	-
Luo et al.2010 [13]	12	18	7	24	57.1%	2.29 [1.13, 4.62]				
Targhetta et al.2008 [14]	2	74	2	245	8.8%	3.31 [0.47, 23.10]		_	-	
Tsutsumi et al.2009 [15]	4	25	0	22	5.1%	7.96 [0.45, 140.05]			•	→
Total (95% CI)		347		543	100.0%	3.80 [2.11, 6.83]			•	
Total events	34		10							
Heterogeneity: Chi ² = 4.55,	df = 7 (P = 0.7)	1); $I^2 = 0$	%				0.04	01	10	100
Test for overall effect: Z = 4	4.45 (P < 0.000	01)				Fa'	0.01 vours R	0.1 1 ituxiamb-treated	l 10 Favours control	100

Rituximab-associated HBV-R

Contents lists available at SciVerse ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: A meta-analysis

Hua-Jie Dong, Ling-Na Ni, Gui-Feng Sheng, Hong-Lei Song, Jian-Zhong Xu, Yang Ling*

Pooled effect: Relative risk (RR) 2.14, 95%CI 1.42-3.22, P = 0.0003

<u>In subgroup analysis:</u>

- 1. in **isolated HBcAb (+)** RR was 5.52 (95%CI 2.05–14.85, P = 0.0007).
- 2. In **HBsAg (+) RR was 1.63**

Conclusions:

Rituximab therapy increase the risk of developing HBV-R in NHL patients with HBcAb(+).

346 non-Hodgkin's lymphoma patients screened 196 patients excluded. Reasons (no. of patients): Histology (12) Virology (95) (HBsAg(+), 40; anti-HBc(-), 43; anti-HCV(+),12) Other major systemic diseases(26) Previous chemotherapy or radiotherapy (24) Age/performance status (7) Other concomitant cancer (1) · Receiving chemotherapy other than rituximab-CHOP (7) Patient refusal (21) Physician judgment (co-morbid conditions/compliance)(3) 150 patients enrolled HBV DNA check before every course of rituximab-CHOP chemotherapy and every 4 weeks for 1 year. **HBV** reactivation (-) **HBV** reactivation (+) (133 patients) (17 patients) Entecavir 0.5 mg/day for 48 weeks Follow-up Follow-up (133 patients) (17 Patients)

Chiun $\operatorname{Hsu}^{1,2}$ $\operatorname{Hsiao-Hui}$ Tsou^3 $\operatorname{Shyh-Jer Lin}^4$ $\operatorname{Ming-Chung}$ Wang^5 $\operatorname{Ming Yao}^6$ $\operatorname{Wen-Li}$ Hwang^7 $\operatorname{Woei-Yau}$ Kao^8 $\operatorname{Chang-Fang}$ Chiu^9 $\operatorname{Sheng-Fung Lin}^{10}$ $\operatorname{Johnson Lin}^{11}$ $\operatorname{Cheng-Shyong Chang}^{12}$ $\operatorname{Hwei-Fang Tien}^6$ $\operatorname{Tsang-Wu Liu}^3$ $\operatorname{Pei-Jer Chen}^{6,13}$ and $\operatorname{Ann-Lii}$ $\operatorname{Cheng}^{1,2}$ on behalf of the Taiwan Cooperative Oncology Group

Follow-up status (no. of patients)* Follow-up status (no. of patients)*

 Alive and completion of all HBV DNA follow-up (84)
 Alive and completion of all HBV DNA follow-up (11)

HBV DNA follow-up ongoing (19)

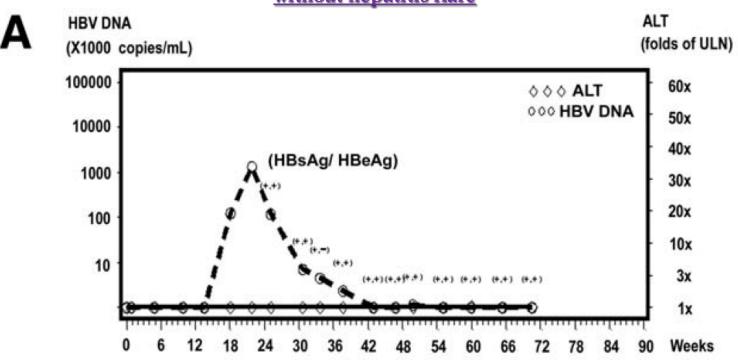
Withdrawal of consent (6)

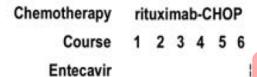
events (21)

Death due to tumor progression/ adverse

 Change to other chemotherapy regimens due to medical/ personal reasons (3)

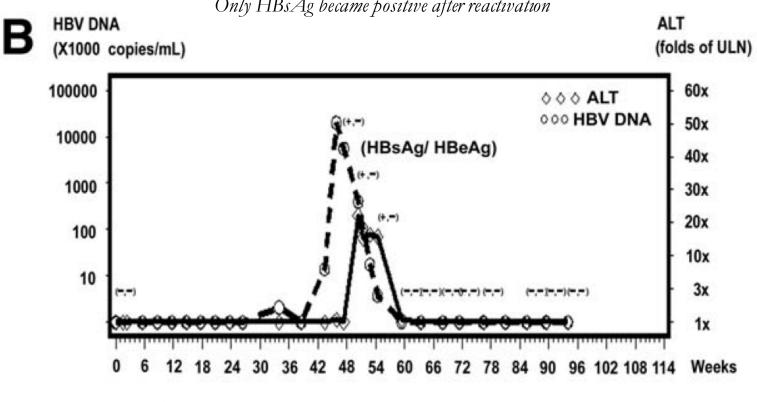
- HBV DNA follow-up ongoing (1)
- Death due to tumor progression/ adverse events (5)


^{*:} as of April 1, 2013



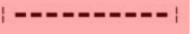
Chiun Hsu,^{1,2} Hsiao-Hui Tsou,³ Shyh-Jer Lin,⁴ Ming-Chung Wang,⁵ Ming Yao,⁶ Wen-Li Hwang,⁷ Woei-Yau Kao,⁸ Chang-Fang Chiu,⁹ Sheng-Fung Lin,¹⁰ Johnson Lin,¹¹ Cheng-Shyong Chang,¹² Hwei-Fang Tien,⁶ Tsang-Wu Liu,³ Pei-Jer Chen,^{6,13} and Ann-Lii Cheng,^{1,2} on behalf of the Taiwan Cooperative Oncology Group

HBV- R during rituximab-CHOP without hepatitis flare



Chiun Hsu, ^{1,2} Hsiao-Hui Tsou, ³ Shyh-Jer Lin, ⁴ Ming-Chung Wang, ⁵ Ming Yao, ⁶ Wen-Li Hwang, ⁷ Woei-Yau Kao, ⁸ Chang-Fang Chiu, ⁹ Sheng-Fung Lin, ¹⁰ Johnson Lin, ¹¹ Cheng-Shyong Chang, ¹² Hwei-Fang Tien, ⁶ Tsang-Wu Liu, ³ Pei-Jer Chen, ^{6,13} and Ann-Lii Cheng, ^{1,2} on behalf of the Taiwan Cooperative Oncology Group

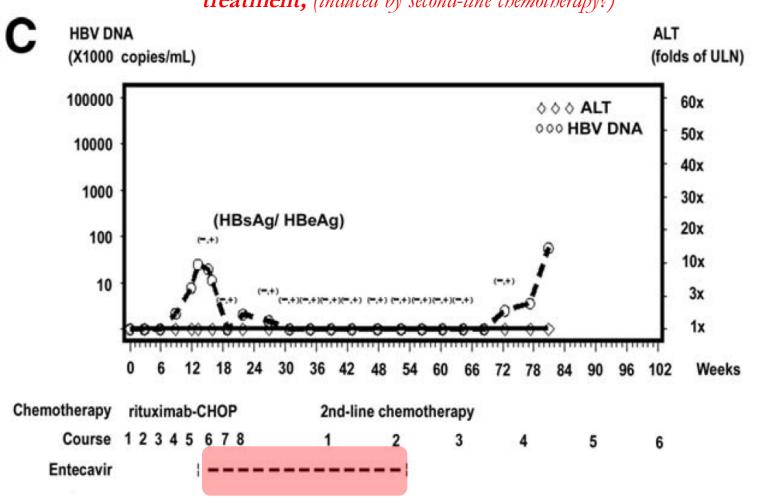
HBV- R after completion of rituximab-CHOP with hepatitis flare.


Only HBs Ag became positive after reactivation

Chemotherapy rituximab-CHOP

Course 1 2 3 4 5 6 7 8

Entecavir

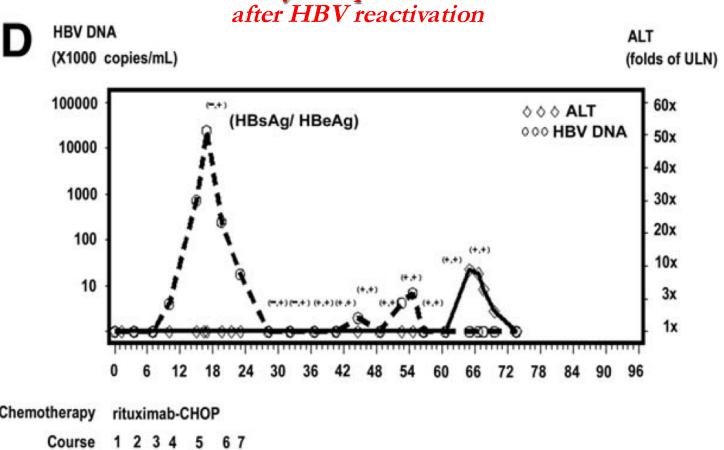


AASLD

Chemotherapy-Induced Hepatitis B Reactivation in Lymphoma Patients With Resolved HBV Infection: A Prospective Study

Chiun Hsu, ^{1,2} Hsiao-Hui Tsou, ³ Shyh-Jer Lin, ⁴ Ming-Chung Wang, ⁵ Ming Yao, ⁶ Wen-Li Hwang, ⁷ Woei-Yau Kao, ⁸ Chang-Fang Chiu, ⁹ Sheng-Fung Lin, ¹⁰ Johnson Lin, ¹¹ Cheng-Shyong Chang, ¹² Hwei-Fang Tien, ⁶ Tsang-Wu Liu, ³ Pei-Jer Chen, ^{6,13} and Ann-Lii Cheng, ^{1,2} on behalf of the Taiwan Cooperative Oncology Group

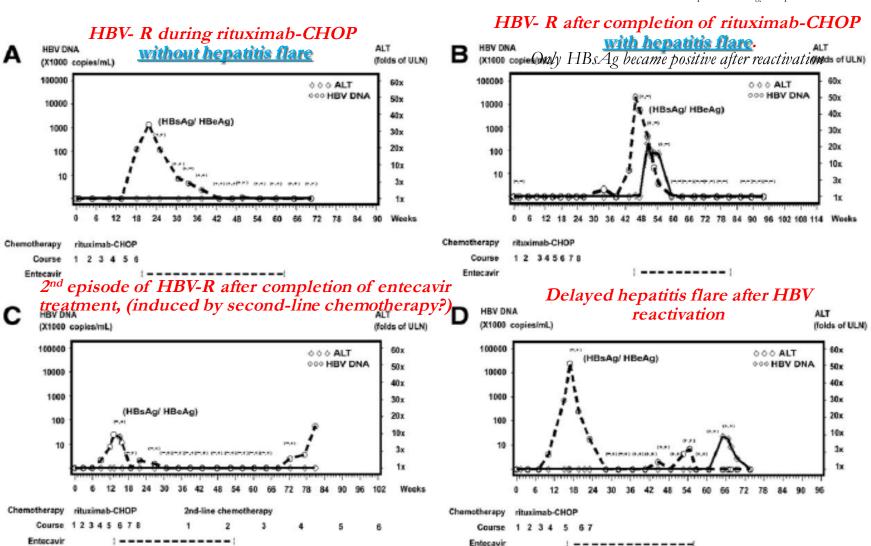
2nd episode of HBV-R after completion of entecavir **treatment**, (induced by second-line chemotherapy?)





Chiun Hsu, ^{1,2} Hsiao-Hui Tsou, ³ Shyh-Jer Lin, ⁴ Ming-Chung Wang, ⁵ Ming Yao, ⁶ Wen-Li Hwang, ⁷ Woei-Yau Kao, ⁸ Chang-Fang Chiu, ⁹ Sheng-Fung Lin, ¹⁰ Johnson Lin, ¹¹ Cheng-Shyong Chang, ¹² Hwei-Fang Tien, ⁶ Tsang-Wu Liu, ³ Pei-Jer Chen, ^{6,13} and Ann-Lii Cheng, ^{1,2} on behalf of the Taiwan Cooperative Oncology Group

Delayed hepatitis flare after HBV reactivation



Entecavir

Chiun Hsu, ^{1,2} Hsiao-Hui Tsou, ³ Shyh-Jer Lin, ⁴ Ming-Chung Wang, ⁵ Ming Yao, ⁶ Wen-Li Hwang, ⁷ Woei-Yau Kao, ⁸ Chang-Fang Chiu, ⁹ Sheng-Fung Lin, ¹⁰ Johnson Lin, ¹¹ Cheng-Shyong Chang, ¹² Hwei-Fang Tien, ⁶ Tsang-Wu Liu, ³ Pei-Jer Chen, ^{6,13} and Ann-Lii Cheng, ^{1,2} on behalf of the Taiwan Cooperative Oncology Group

346 non-Hodgkin's lymphoma patients screened 196 patients excluded. Reasons (no. of patients): Histology (12) Virology (95) (HBsAg(+), 40; anti-HBc(-), 43; anti-HCV(+),12) Other major systemic diseases(26) Previous chemotherapy or radiotherapy (24) Age/performance status (7) Other concomitant cancer (1) Receiving chemotherapy other than rituximab-CHOP (7) Patient refusal (21) Physician judgment (co-morbid conditions/compliance)(3) 150 patients enrolled HBV DNA check before every course of rituximab-CHOP chemotherapy and every 4 weeks for 1 year. **HBV** reactivation (-) **HBV** reactivation (+) (133 patients) (17 patients) Entecavir 0.5 mg/day for 48 weeks Follow-up Follow-up (133 patients) (17 Patients) Follow-up status (no. of patients)* Follow-up status (no. of patients)* · Alive and completion of all HBV DNA

Chiun Hsu,^{1,2} Hsiao-Hui Tsou,³ Shyh-Jer Lin,⁴ Ming-Chung Wang,⁵ Ming Yao,⁶ Wen-Li Hwang,⁷ Woei-Yau Kao,⁸ Chang-Fang Chiu,⁹ Sheng-Fung Lin,¹⁰ Johnson Lin,¹¹ Cheng-Shyong Chang,¹² Hwei-Fang Tien,⁶ Tsang-Wu Liu,³ Pei-Jer Chen,^{6,13} and Ann-Lii Cheng,^{1,2} on behalf of the Taiwan Cooperative Oncology Group

- HBV-related severe hepatitis: 7(4,6%)
- Chemotherapy delay: **2** (1,3%)

Severe HBV-related hepatitis (ALT > 10-fold of upper limit of normal) occurred in 4 patients, despite entecavir treatment.

- Alive and completion of all HBV DNA follow-up (11)
- HBV DNA follow-up ongoing (1)
- Death due to tumor progression/ adverse events (5)

Withdrawal of consent (6)
 Change to other chemotherapy reg

HBV DNA follow-up ongoing (19)

follow-up (84)

events (21)

 Change to other chemotherapy regimens due to medical/ personal reasons (3)

Death due to tumor progression/ adverse

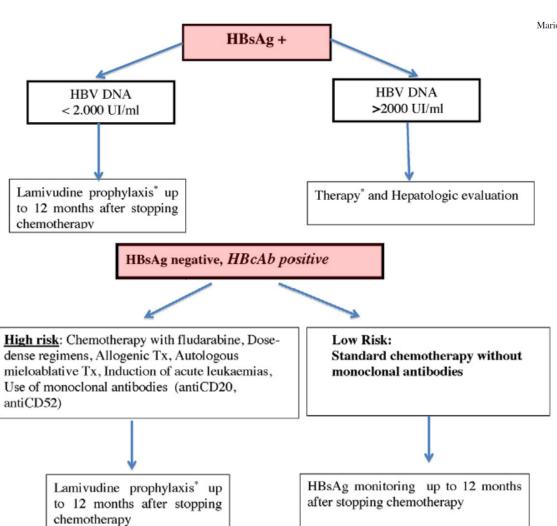
*: as of April 1, 2013

www.elsevier.com/locate/critrevonc

Hepatitis B in immunosuppressed cancer patients: Pathogenesis, incidence and prophylaxis

Mario Mandalà ^{a,*}, Stefano Fagiuoli ^b, Daniela Francisci ^c, Raffaele Bruno ^d, Barbara Merelli ^a, Luisa Pasulo ^b, Carlo Tondini ^a, Roberto Labianca ^a, Fausto Roila ^e

Screening for hepatitis B in cancer patients receiving immunosuppressive therapy.

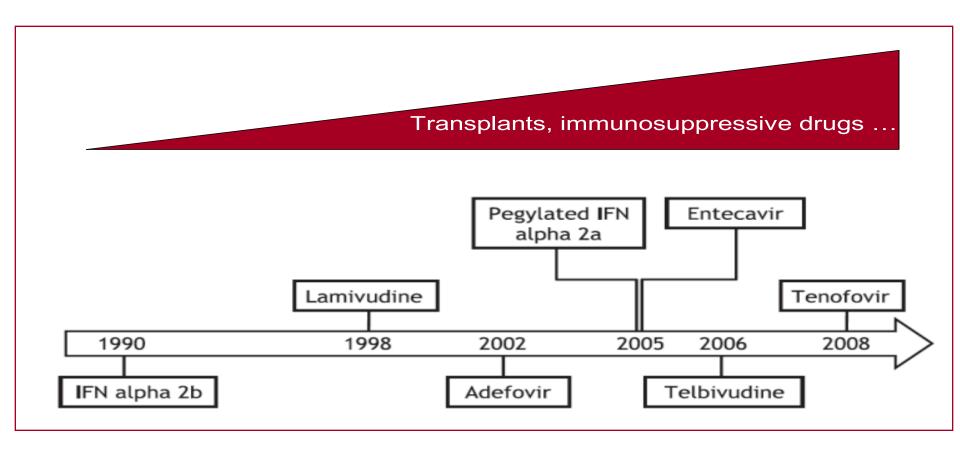

Scientific society	Recommendation	Recommendation					
	Oncologic	Hematologic					
AASLD [61]	HBsAg, anti-HBc	HBsAg, anti-HBc					
EASL [64]	HBsAg, anti-HBc	HBsAg, anti-HBc					
CDC [85]	HBsAg, anti-HBc, HBsAb	HBsAg, anti-HBc, HBsAb					
Scottish Liver Society [63]	None	HBsAg, HBcAb					
NIH Consensus [86]	HBsAg	HBsAg					
Italian Guidelines [7]	HBsAg	HBsAg, anti-HBc, HBsAb					
ASCO [62]	Only patients who undergo certai	n "highly" cytotoxic or immunosuppressive therapies (i.e., stem cell					
	transplants or treatment with ritur	ximab) and patients "at risk" for HBV (HBV infection or prior exposure					
	to HBV): HBsAg, anti-HBc						
APASL [87]	HBsAg	HBsAg					
Canadian Guidelines [88]	HBsAg, anti-HBc, HBsAb	HBsAg, anti-HBc, HBsAb					

Critical Reviews in Oncology/Hematology 87 (2013) 12–27

Screening for HBsAg (if HBsAg +: HBVDNA), HBcAb and HBsAb

Hepatitis B in immunosuppressed cancer patients: Pathogenesis, incidence and prophylaxis

Mario Mandalà ^{a,*}, Stefano Fagiuoli ^b, Daniela Francisci ^c, Raffaele Bruno ^d, Barbara Merelli ^a, Luisa Pasulo ^b, Carlo Tondini ^a, Roberto Labianca ^a, Fausto Roila ^c


Hepatitis B in immunosuppressed cancer patients: Pathogenesis, incidence and prophylaxis

Mario Mandalà a,*, Stefano Fagiuoli b, Daniela Francisci c, Raffaele Bruno d, Barbara Merelli a, Luisa Pasulo^b, Carlo Tondini^a, Roberto Labianca^a, Fausto Roila^e

Management strategy for immunosuppressed hematologic cancer patients.

Active carrier	Inactive carrier	Anti-core
HBsAg+/HBVDNA > 2000 IU/ml Therapy (entecavir or tenofovir)	HBsAg+/HBVDNA < 2000 IU/ml Universal prophylaxis 6–12 months after the end of therapy	HBsAg−/anti-HBc+ Universal prophylaxis ^a or monitoring and targeted prophylaxis (after seroreversion HBsAg− → HBsAg+)

^a High risk (hematology): chemotherapy with fludarabine, dose-dense regimens, allogenic Tx, autologous mieloablative Tx, induction of acute leukemias, use of monoclonal antibodies (antiCD20, antiCD52): prophylaxis for 12–18 months.

Prophylaxis and Treatment of Hepatitis B in Immunocompromised Patients

1. Definitions

A. Virological categories

Virological categories

	Active carrier	Inactive carrier	Anti-HBc positive (anti-core)
HBsAg	Positive	Positive	Negative
HBeAg	Positive or negative	Negative	Negative
Anti-HBs	Negative	Negative	Positive or negative
Anti-HBc	Positive	Positive	Positive
HBV DNA serum	>2.000 IU/ml	>2.000 IU/ml	Negative (>90%)
ALT^b	Persistently or intermittently increased	Persistently normal ^c	Persistently normal ^c
HBV DNA tissue	Positive	Positive	Positive
Liver damage ^d	Yes (>90%)	No (>90%) ^c	No ^c

Basal Evaluation in immunocompromised patients – Virological Categories

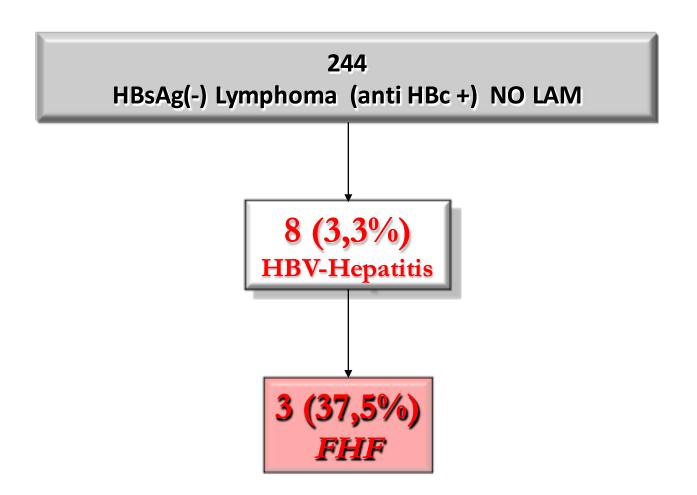
	Active carrier	Inactive carrier	pOBI (anti-core)
HBsAg	+	+	-
HBeAg	-/+	-	-
antiHBe	-/+	+	+
antiHBc	+	+	+
antiHBs	-	-	±
qHBsAg	≥1000	< 1000°°	-
ALT	Increased (persistent or intermittent)	Normal*	Normal*
HBV DNA (IU/mL) serum	> 2000	≤ 2000°°	-
HBV DNA (IU/mL) liver	+	+	+
Liver Stiffness (kPa)	> 6 o ≤ 6^	< 6*	<6*

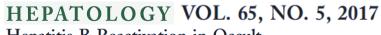
	Virologic events
Active carriers	Significant viremia
	Progressive CH (AIII)
Inactive carriers	Virologic reactivation (viremia > 2,000 IU); clinical (HBV DNA < 2000 IU and ALT UNV) (AIII)
OBI (anti-core)	Seroreversion (HBsAg+) (AIII)
Virologic response	HBV DNA negative by PCR (AIII)
Virologic BK	1 log increase of HBV DNA (AV)

	Clinical definitions
Baseline	Hepatogic assessment (underlying liver disease)
Infection	HBV DNA and or HBsAg+ in originally negative patients (not necessarily associated with reactivation of hepatitis)
Hepatitis B reacivation	Viremia (> 2000 IU) and ALT levels above the UNV

3. Treatment strategies 2017

Table 4 Treatment strategies				
		Original virological c	ondition	
		Active carriers	Inactive carriers or anti-c	ore positive
Clinical condition	Infection	Yes	Yes	
	Hepatitis	Yes	No	
Treatment		Therapy	Prophylaxis	
			All the population	Only in patients with infection markers
			Universal	Targeted


3.1 Treatment options 2011


Lamivudine	gsk _{GlaxoSmithKline}		Only prophylaxis (long term in Inactive carriers?)
Tenofovir	(± emtricitabina)	GILEAD	HBV or HIV/HBV
Entecavir	Bristol-Myers Squibb		HBV
Telbivudine	NOVARTIS		HIV (no ART)

2009 113: 3147-3153 Prepublished online Jan 14, 2009; doi:10 1182/blood-2008-10-163493

How I treat and monitor viral hepatitis B infection in patients receiving intensive immunosuppressive therapies or undergoing hematopoietic stem cell transplantation

Raymond Liang

Hepatitis B Reactivation in Occult Viral Carriers Undergoing Hematopoietic Stem Cell Transplantation:

A Prospective Study

Wai-Kay Seto, ^{1,2} Thomas Sau-Yan Chan, ¹ Yu-Yan Hwang, ¹ Danny Ka-Ho Wong, ^{1,2} James Fung, ^{1,2} Kevin Sze-Hang Liu, ¹ Harinder Gill, ¹ Yuk-Fai Lam, ¹ Eric H.Y. Lau, ³ Ka-Shing Cheung, ¹ Albert K.W. Lie, ¹ Ching-Lung Lai, ^{1,2} Yok-Lam Kwong, ¹ and Man-Fung Yuen, ^{1,2}

Digestive and Liver Disease 43S (2011) S49–S56

HBV disease: HBsAg carrier and occult B infection reactivation in haematological setting

Carlo Marinone*, Monica Mestriner

Haematology:

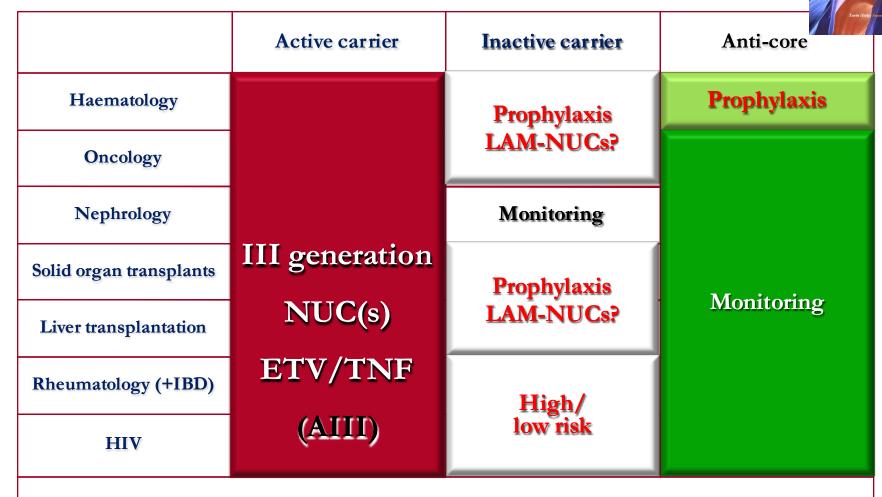
Proposed statement

1. Clinicians caring for patients with hematologic malignancies need to be fully aware of the methods to identify, control and treat viral hepatitis in their patients, and to work in a <u>multidisciplinary team</u> in cooperation with a liver disease specialist (A-VI)

Proposed statement

- Patients with hematologic malignancies undergoing immunosuppressive treatment or chemotherapy should be screened for HBsAg, anti-HBc, and anti-HBs (and HBV DNA if HBsAg is already positive) because of the high risk of viral reactivation with severe hepatic flares (A-III).
- Patients with B-cell NHL should be screened for anti-HCV (A-III).

Active carrier	Inactive carrier	Anti-core
HBsAg+	HBsAg+	HBsAg(-) antiHBc+
Therapy	Universal Prophylaxis (6-12 months after the end of treatment)	Universal prophylaxis* or HBsAg monitoring** (targeted prophylaxis) (low immunosuppressive potential as the ABVD of the CHOP 21 days scheme)
AIII	BV	BVI


^{*}High risk (haematology): Chemotherapy with fludarabine, Dose-sense regimes, Allogenic Tx, Autologous mieloablative Tx, Induction of acute leukaemias, Use of monoclonal antibodies (antiCD20, antiCD52).

** HBV-DNA monitoring Controversial

Update 2011:

High risk in CLL and myeloma, 1-3 months HBsAg monitoring in anti-core or UP in high risk, Prophylaxis/Monitoring 12-<u>18 months</u> after the end of the IS therapy, monitoring after the stop of prophylaxis

Conclusions

LT: $NUC(s) + low dose HBIg; anti-HBc+ livers \rightarrow LAM prophylaxis$

Conclusions

Prophylaxis and therapy in imn	nunocompromised subjects		
	Active carrier HBsAg positive	Inactive carrier	Anti-core HBsAg negative
Haematology and HSCT	Т	UP	UP ^a High risk Monitoring low risk
Oncology	T	UP	Monitoring
Solid organ transplant	T	UP	Monitoring
Nephrology (dialysis)	T	Monitoring	Monitoring
Rheumatology	T	UP (high risk) ^b Monitoring (low risk) ^c	Monitoring
HIV	T (ART- and ART+)	Monitoring (ART-) UP (ART+)	Monitoring
Liver transplantation	$T^d \; (\text{pre-LT}) \! \to UP^d \; (\text{post-LT})$	$UP^{d,e}$ (pre-LT if PCR+) \rightarrow $UP^{d,e}$ post-LT	Monitoring

	Virologic events
Active carriers	Significant viremia , Progressive CH (AIII)
Inactive carriers	Virologic reactivation (viremia > 2,000 IU); clinical (HBV DNA < 2000 IU and ALT UNV) (AIII)
OBI (anti-core)	Seroreversion (HBsAg+) (AIII)
Virologic response	HBV DNA negative by PCR (AIII)
Virologic BK	1 log increase of HBV DNA (AV)

	Clinical definitions
Baseline	Hepatogic assessment (underlying liver disease)
Infection	HBV DNA and or HBsAg+ in originally negative patients (not necessarily associated with reactivation of hepatitis)
Hepatitis B reactivation	Viremia (> 2000 IU)and ALT levels above the UNV